Background: This study aims to map the learned curriculum based on students' feedback regarding the biomedical literature evaluation competencies in a pharmacy curriculum, to evaluate teaching methods and to report students' longitudinal self-assessment of their achievement of related learning outcomes as they progress from didactic to experiential courses.
Methods: The biomedical literature evaluation competencies were mapped in three courses delivered during different pharmacy professional years (PPY): Drug Information and Literature Evaluation (PHA421) offered in the second PPY, Pharmacoeconomics (PHA557) and Professional Pharmacy Practice Experience-Hospital/Drug Information Services (PHA570) offered in the third PPY. A unified survey was developed to collect information from students at the beginning and completion of these courses. Survey results were then compared to school assessment data of identified courses for triangulation of findings.
Results: Listed student learning outcomes are consistently achieved through all three courses with more assertion from the students at the completion of the applied experiential course PHA 570 (>90 % agree or strongly agree). In terms of delivery methods, 84 % of students perceived the benefits of active learning methods in reinforcing acquired skills and increasing confidence in knowledge and critical thinking in a less stressful learning environment. Results shown at the end of each course indicate a favorable student response from one course to the next where almost all students replied with 'agree to strongly agree' to survey questions assessing their readiness to critically evaluating trials (72 %, 96 % and 92 %) in PHA421, PHA557 and PHA570, respectively. Study findings are in congruence with school assessment database of the selected courses.
Conclusion: Formative assessment results demonstrated acquisition of required analytical skills, and completion of course learning outcomes as students progressed from introductory to advanced courses covering the biomedical literature component.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4751754 | PMC |
http://dx.doi.org/10.1186/s12909-016-0583-7 | DOI Listing |
Drugs
January 2025
Lysosomal Storage Disorders Unit, Royal Free London NHS Foundation Trust, University College London, London, NW3 2QG, UK.
Lysosomal storage disorders (LSDs) are rare inherited metabolic disorders characterized by defects in the function of specific enzymes responsible for breaking down substrates within cellular organelles (lysosomes) essential for the processing of macromolecules. Undigested substrate accumulates within lysosomes, leading to cellular dysfunction, tissue damage, and clinical manifestations. Clinical features vary depending on the degree and type of enzyme deficiency, the type and extent of substrate accumulated, and the tissues affected.
View Article and Find Full Text PDFExposure to toxins causes lasting damaging effects on the body. Numerous studies in humans and animals suggest that diet has the potential to modify the epigenome and these modifications can be inherited transgenerationally, but few studies investigate how diet can protect against negative effects of toxins. Potential evidence in the primary literature supports that caloric restriction, high-fat diets, high protein-to-carbohydrate ratios, and dietary supplementation protect against environmental toxins and strengthen these effects on their offspring's epigenome.
View Article and Find Full Text PDFSci Rep
January 2025
INSERM, Bergonié Institute, BPH, U1219, CIC-P 1401, University of Bordeaux, Bordeaux, France.
In vitro and animal studies have suggested that inoculation with herpes simplex virus 1 (HSV-1) can lead to amyloid deposits, hyperphosphorylation of tau, and/or neuronal loss. Here, we studied the association between HSV-1 and Alzheimer's disease biomarkers in humans. Our sample included 182 participants at risk of cognitive decline from the Multidomain Alzheimer Preventive Trial who had HSV-1 plasma serology and an amyloid PET scan.
View Article and Find Full Text PDFExpert Rev Proteomics
January 2025
Biological and Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Saudi Arabia.
Introduction: The DeepMind's AlphaFold (AF) has revolutionized biomedical research by providing both experts and non-experts with an invaluable tool for predicting protein structures. However, while AF is highly effective for predicting structures of rigid and globular proteins, it is not able to fully capture the dynamics, conformational variability, and interactions of proteins with ligands and other biomacromolecules.
Areas Covered: In this review, we present a comprehensive overview of the latest advancements in 3D model predictions for biomacromolecules using AF.
Database (Oxford)
January 2025
Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark.
Lifestyle factors (LSFs) are increasingly recognized as instrumental in both the development and control of diseases. Despite their importance, there is a lack of methods to extract relations between LSFs and diseases from the literature, a step necessary to consolidate the currently available knowledge into a structured form. As simple co-occurrence-based relation extraction (RE) approaches are unable to distinguish between the different types of LSF-disease relations, context-aware models such as transformers are required to extract and classify these relations into specific relation types.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!