Study of total dry matter and protein extraction from canola meal as affected by the pH, salt addition and use of zeta-potential/turbidimetry analysis to optimize the extraction conditions.

Food Chem

Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada; Department of Soil Sciences and Agri-Food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada. Electronic address:

Published: June 2016

Total dry matter and proteins were differentially and preferentially extracted from canola meal (CM) under different conditions. The effect of the extraction medium pH, CM concentration and salt concentrations were found to have different influences on the extractability of total dry matter and proteins from CM. The pH of the extracting medium had the most significant effect. The maximal total dry matter (42.8±1.18%) extractability was obtained with 5% CM at pH 12 without salt addition, whereas the maximal for total protein (58.12±1.47%) was obtained with 15% CM under the same conditions. The minimal extractability for the dry matter (26.63±0.67%) was obtained with 5% CM at pH 10 without salt added and the minimal protein extractability was observed in a 10% CM at pH 10, in 0.01 NaCl. Turbidity and ζ-potential measurements indicated that pH 5 was the optimum condition for the highest protein extraction yield. SDS-PAGE analysis showed that salt addition contributes to higher solubility of canola proteins specifically cruciferin fraction, although it reduces napin extraction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2016.01.074DOI Listing

Publication Analysis

Top Keywords

dry matter
20
total dry
16
salt addition
12
protein extraction
8
canola meal
8
matter proteins
8
maximal total
8
dry
5
matter
5
extraction
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!