Background: A bursting inflammation has been observed that compromises neurologic function in patients who experience stroke. We sought to examine the neuroprotective efficacy of 4'-O-β-D-glucosyl-5-O-methylvisamminol (OGOMV), a novel histone H3 phosphorylation epigenetic suppressor) in a transient middle cerebral artery occlusion (tMCAO).
Methods: A rodent tMCAO model was used. Administration with 400 μg/kg/day OGOMV was initiated 12 hours before (prevention) and 1 hour after animals were subjected to tMCAO (reversal). The cerebral cortex was harvested to examine protein kinase B (PI3D/Akt), 5-bromo-2'-deoxyuridine (Western blot), and caspases (reverse-transcription polymerase chain reaction). In addition, cerebrospinal fluid samples were collected to examine interleukin 1-β, interleukin-6, monocyte chemoattractant protein-1, and tumor necrosis factor-α (reverse-transcription polymerase chain reaction).
Results: Cortical 5-bromo-2'-deoxyuridine and phospho-PI3D/Akt were reduced in tMCAO animals, compared with the healthy controls but increased in the OGOMV treatment and prevention groups. Activated cortical caspase-3,-6, and -9a as well as increased IL-1β and TNF-α levels were observed in the tMCAO animals (P < 0.05). Both prevention and treatment with OGOMV significantly reduced cleaved caspase-3 and -9a groups, but no significant change in caspase-6 was noted. Perifosine, an Akt inhibitor, was added to reduce the bioexpression of phospho-P13D/Akt, and Bcl-2 level and increased cleaved caspase-9a level in both OGOMV prevention and treatment tMCAO groups (P > 0.05).
Conclusion: Our study suggests that OGOMV could exert a neuroprotective effect by inhibiting the P13D/Akt protein, attenuating inflammation, and cleaved caspase-3- and -9a-related apoptosis. This study also lends credence to support the notion that the prevention of OGOMV could attenuate proinflammatory cytokine mRNA and late-onset caspases in tMCAO and merits further study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wneu.2016.01.061 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!