The surface-assisted polymerization and cyclodehydrogenation of specifically designed organic precursors provides a route toward atomically precise graphene nanoribbons, which promises to combine the outstanding electronic properties of graphene with a bandgap that is sufficiently large for room-temperature digital-logic applications. Starting from the basic concepts behind the on-surface synthesis approach, this report covers the progress made in understanding the different reaction steps, in synthesizing atomically precise graphene nanoribbons of various widths and edge structures, and in characterizing their properties, ending with an outlook on the challenges that still lie ahead.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201505738 | DOI Listing |
Methods Mol Biol
January 2025
Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
The soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) protein complex drives membrane fusion, and this process is further aided by accessory proteins, including complexin and α-synuclein. To understand the molecular mechanism underlying membrane fusion, we introduce an all-atom molecular dynamics (MD) simulation method. This method is used to understand and predict the conformations of protein and lipids, membrane geometry, and their interaction at femtosecond precision, by describing complex chemical systems with atomic models.
View Article and Find Full Text PDFMicrosc Microanal
January 2025
Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada.
Atom probe tomography (APT) enables three-dimensional chemical mapping with near-atomic scale resolution. However, this method requires precise sample preparation, which is typically achieved using a focused ion beam (FIB) microscope. As the ion beam induces some degree of damage to the sample, it is necessary to apply a protective layer over the region of interest (ROI).
View Article and Find Full Text PDFJ Mol Model
January 2025
College of Electronics and Information, Xi'an Polytechnic University, Xian, People's Republic of China.
Context: The two-dimensional graphene/MoTe heterostructure holds extensive potential applications in optoelectronic devices, sensors, and catalysts. To expand its optical applications, this study systematically investigates the adsorption stability of metal atoms (Au, Pt, Pd, and Fe) on the graphene/MoTe and their influence on its optoelectronic properties employing first-principles methods. The findings indicate that after the adsorption of Au and Pd, the structure retains its direct bandgap properties, while the adsorption of Pt and Fe exhibits indirect bandgap characteristics.
View Article and Find Full Text PDFACS Nano
January 2025
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming 650093, China.
Artificial dimension control has been playing a vital role in electronic structure manipulation and properties generation. However, systematic investigations into the dimensional regulation, such as transformation from two-dimensional (2D) materials to well-controlled one-dimensional (1D) ribbons, remain insufficient via molecular beam epitaxy. Here, high-quality ultranarrow zigzag CuTe nanoribbons are atomically precisely prepared via the dimensional regulation induced by adjusting the Te chemical potential, utilizing CuSe monolayer as the starting 2D template.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Material Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois, 60439, United States.
Exposure of soft material templates to alternating volatile chemical precursors can produce inorganic deposition within the permeable template (e.g. a polymer thin film) in a process akin to atomic layer deposition (ALD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!