In order to determine the optimal operating conditions of full-scale soil washing processes for the removal of heavy metals, the effect of high-power ultrasound on the conventional mechanical soil washing process was investigated in a large lab-scale 28kHz sonoreactor. The soil samples were obtained from an abandoned railway station site in Seoul, Korea, which was contaminated with Cu (242.7±40.0mg/kg), Pb (441.3±49.8mg/kg), and Zn (358.0±35.7mg/kg). The treated concentrations of three heavy metal species in each process were compared with the regulation levels. It was found that higher performance, satisfying the regulation levels, was obtained in the ultrasonic/mechanical process due to the combined effects of macroscale mixing and microscale sonophysical effects. Moreover ultrasound played a more important role in less favorable conditions for the mechanical washing process (less acidic or less washing liquid conditions). Considering the application of the ultrasonic/mechanical soil washing process in real contaminated sites, the optimal conditions for the reactor with the bottom area of 15×15cm and the input ultrasound power of 250W were determined as follows: (1) the amount of soil per an operation was a 300g; (2) the ratio of soil and liquid was 1:3; (3) the concentration of acidic washing liquid was 0.5M HCl.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultsonch.2016.02.002 | DOI Listing |
Environ Technol
January 2025
Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, People's Republic of China.
The remediation of oil-contaminated soil poses significant environmental challenges, often necessitating innovative approaches for effective and sustainable solutions. This study focuses on the synthesis, characterisation, and application of biodegradable capsules loaded with surfactant for enhanced oil remediation of a clean sand. By controlling the release properties of capsules, the research aims to overcome the limitations of conventional surfactant-based remediation methods, such as rapid washout and reduced efficacy over time.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China. Electronic address:
The creation of defects in crystalline structures can tune metal-organic frameworks (MOFs) properties, such as improving their adsorptive and catalytic performance with producing more porosity and active sites. In this work, the bimetallic UiO-66 containing Zn and Zr was prepared. And then UiO-66 with missing cluster defects (UiO-66-1/3) were obtained by acid washing to remove the Zn nodes.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Faculty of Geography, Lomonosov Moscow State University, 119991, Moscow, Russia.
The content of 39 metals and metalloids (MMs) in submicron road dust (PM fraction) was studied in the traffic zone, residential courtyards with parking lots, and on pedestrian roads in parks in Moscow. The geochemical profiles of PM vary slightly between different types of roads and courtyards but differ significantly from those in parks. In Moscow, compared to other cities worldwide, submicron road dust contains less As, Sb, Mo, Cr, Cd, Sn, Tl, Ca, Rb, La, Y, U, but more Cu, Zn, Co, Fe, Mn, Ti, Zr, Al, V.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Centre for Environmental Studies, Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai, 600 025, India.
Landfill biomining is indeed a promising eco-friendly approach to sustainably manage and reclaim old dumpsites. Soil like fractions of < 8-10 mm size, also known as bioearth or good earth constitute a substantial part of the legacy waste. Detailed characterization is necessary to meet regulatory standards for the safe use of bioearth and minimize its environmental and human health impacts upon reuse.
View Article and Find Full Text PDFPlant Dis
January 2025
Guangdong Academy of Agricultural Sciences, Crop Research Institute, Wushan Road, Tianhe District, guangzhou, China, 510640;
Sweet potato ( (L.) Lam) is a major food crop that is cultivated in southern China (Huang et al. 2020).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!