In a present study, nutrient removal from municipal wastewater by Chlorella vulgaris and Nannochloropsis oculata was investigated by using mixotrophic cultivation with glycerol (0 to 5 g/L). Performance parameters were assessed by estimating the removal of total nitrogen, total phosphorus, chemical oxygen demand (COD), biomass growth, chlorophyll content, lipid yield, and fatty acids. With the addition of 2 g/L glycerol, a maximum biomass productivity of 56 mg/L/day was achieved in the mixotrophic culture of C. vulgaris within 12 days. The mixotrophic culture showed a 30-fold increase in biomass productivity compared to the wastewater without any glycerol. However, the highest total nitrogen removal (80.62 %), total phosphate removal (60.72 %), and COD removal (96.3 %) was observed in the N. oculata culture supplemented with 3, 5, and 1 g/L glycerol, respectively. These results suggest that mixotrophic cultivation using glycerol offers great potential in the production of renewable biomass, waste water treatment, and consequent production of high-value microalgal oil. Graphical Abstract Simultaneous biomass production and nutrient removal using microalgae cultivated in wastewater supplemented with glycerol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-016-6224-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!