Plants use light as an indicator of time and space as well as the major energy source for photosynthesis. Due to the development of specific photoreceptors, plants can perceive a wide range of wavelengths and adjust their development accordingly to their surroundings. In addition to light, the circadian clock allows the anticipation of diurnal and seasonal changes thus providing organisms with the adequate physiological responses to ever changing surroundings, which are reflected in increased fitness and survival rate. Although initially described as a set of interconnected transcriptional loops, it is now accepted that posttranslational modifications are also important for proper clock function. In fact, not only the clock but also light signaling rely on posttranslational modifications, such as phosphorylation and ubiquitination, for proper signal transduction. We have designed a simple and yet reproducible method to determine protein stability and half-life under different light and circadian conditions. Our method only requires standard laboratory equipment, a relatively small amount of starting material and can be applied to young seedlings and mature plants. Besides our application to study light and circadian clock proteins, this protocol can be adapted to any other conditions that regulate protein stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-3356-3_13 | DOI Listing |
Int J Mol Sci
January 2025
Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via Settimio Severo 83, 87036 Rende, CS, Italy.
A circadian clock (CC) has evolved in plants that synchronizes their growth and development with daily and seasonal cycles. A properly functioning circadian clock contributes to increasing plant growth, reproduction, and competitiveness. In plants, continuous light treatment has been a successful approach for obtaining novel knowledge about the circadian clock.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China.
Light is a vital environmental cue that profoundly influences the development of plants. LED lighting offers significant advantages in controlled growth environments over fluorescent lighting. Under monochromatic blue LED light, wheat plants exhibited reduced stature, accelerated spike development, and a shortened flowering period with increased blue light intensity promoting an earlier heading date.
View Article and Find Full Text PDFMolecules
December 2024
Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Guang-Fu Road, Hsinchu 30013, Taiwan.
Low-color-temperature candlelight organic light-emitting diodes (OLEDs) offer a healthier lighting alternative by minimizing blue light exposure, which is known to disrupt circadian rhythms, suppress melatonin, and potentially harm the retina with prolonged use. In this study, we explore the integration of transition metal dichalcogenides (TMDs), specifically molybdenum disulfide (MoS) and tungsten disulfide (WS), into the hole injection layers (HILs) of OLEDs to enhance their performance. The TMDs, which are known for their superior carrier mobility, optical properties, and 2D layered structure, were doped at levels of 0%, 5%, 10%, and 15% in PEDOT:PSS-based HILs.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA.
Background: Disturbances of the sleep-wake cycle and other circadian rhythms typically precede the age-related deficits in learning and memory, suggesting that these alterations in circadian timekeeping may contribute to the progressive cognitive decline during aging. The present study examined the role of immune cell activation and inflammation in the link between circadian rhythm dysregulation and cognitive impairment in aging.
Methods: C57Bl/6J mice were exposed to shifted light-dark (LD) cycles (12 h advance/5d) during early adulthood (from ≈ 4-6mo) or continuously to a "fixed" LD12:12 schedule.
PLoS Genet
January 2025
School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China.
A key property of the circadian clock is that it is reset by light to remain synchronized with the day-night cycle. An attractive model to explore light input to the circadian clock in vertebrates is the zebrafish. Circadian clocks in zebrafish peripheral tissues and even zebrafish-derived cell lines are entrainable by direct light exposure thus providing unique insight into the function and evolution of light regulatory pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!