A general view on the reactivity of the oxygen-functionalized graphene basal plane.

Phys Chem Chem Phys

University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia.

Published: March 2016

In this contribution we inspect the adsorption of H, OH, Cl and Pt on oxidized graphene using DFT calculations. The introduction of epoxy and hydroxyl groups on the graphene basal plane significantly alters its chemisorption properties, which can be attributed to the deformation of the basal plane and the type and distribution of these groups. We show that a general scaling relation exists between the hydrogen binding energies and the binding energies of other investigated adsorbates, which allows for a simple probing of the reactivity of oxidized graphene with only one adsorbate. The electronic states of carbon atoms located within the 2 eV interval below the Fermi level are found to be responsible for the interaction of the basal plane with the chosen adsorbates. The number of electronic states situated in this energy interval is shown to correlate with hydrogen binding energies.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5cp07612aDOI Listing

Publication Analysis

Top Keywords

basal plane
16
binding energies
12
graphene basal
8
oxidized graphene
8
hydrogen binding
8
electronic states
8
general view
4
view reactivity
4
reactivity oxygen-functionalized
4
graphene
4

Similar Publications

Chemical corrosion resistance mechanism of titanium alloy radiation rods with self-protected structure.

Ultrason Sonochem

January 2025

State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China; Light Alloy Research Institute, Central South University, Changsha 410083, China.

The chemical corrosion of the TC4 radiation rod surface (TRRS) during the ultrasonic casting process has the potential to significantly impair the smooth conduction of ultrasonic waves. However, in the later stages of corrosion, a self-protected structure (TSPS) emerges under the ultrasonic cavitation effect, which serves to impede the chemical corrosion of the TRRS and markedly reduce the rate of mass loss of the radiation rod. This ensures the smooth ultrasonic conduction of the radiation rod during operation.

View Article and Find Full Text PDF

An efficient electrocatalytic in-situ hydrogen peroxide generation for ballast water treatment with oxygen groups.

Sci Total Environ

January 2025

Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.

The in-situ electrochemical production of hydrogen peroxide (HO) offers a promising approach for ballast water treatment. However, further advancements are required to develop electrocatalysts capable of achieving efficient HO generation in seawater environments. Herein, we synthesized two-dimensional lamellated porous carbon nanosheets enriched with oxygen functional groups, which exhibited exceptional performance in HO electrosynthesis.

View Article and Find Full Text PDF

Transition-metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS), have emerged as a generation of nonprecious catalysts for the hydrogen evolution reaction (HER), largely due to their theoretical hydrogen adsorption energy close to that of platinum. However, efforts to activate the basal planes of TMDs have primarily centered around strategies such as introducing numerous atomic vacancies, creating vacancy-heteroatom complexes, or applying significant strain, especially for acidic media. These approaches, while potentially effective, present substantial challenges in practical large-scale deployment.

View Article and Find Full Text PDF

As a graphene-like layered material, molybdenum disulfide (MoS), has attracted increasing attentions for its promising application in electrocatalysis. Whereas MoS still suffers from the sluggish reaction kinetics in oxygen evolution reaction (OER) due to the low density of active sites in most exposed planes. In this work, high density of active sites on MoS basal planes has been obtained by synthesizing mesoporous MoS with Co doping and sulfur vacancies (V).

View Article and Find Full Text PDF

Background: Right ventricular (RV) failure is a well-recognized pivotal prognostic factor of adverse outcomes in pulmonary artery hypertension (PAH), while RV dilation provides significant implications for adaptive or maladaptive changes. PAH is a predominant cause of mortality among patients with connective tissue disease (CTD). This study aims to elucidate the prognostic significance of RV morphology, as assessed by echocardiography (ECHO), in with CTD associated with PAH (CTD-PAH).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!