Identification of energy dissipation mechanisms in CNT-reinforced nanocomposites.

Nanotechnology

Department of Aerospace Engineering, Texas A&M University, 3409 TAMU, College Station, Texas 77843-3409, USA.

Published: March 2016

In this paper we present our recent findings on the mechanisms of energy dissipation in polymer-based nanocomposites obtained through experimental investigations. The matrix of the nanocomposite was polystyrene (PS) which was reinforced with carbon nanotubes (CNTs). To study the mechanical strain energy dissipation of nanocomposites, we measured the ratio of loss to storage modulus for different CNT concentrations and alignments. CNT alignment was achieved via hot-drawing of PS-CNT. In addition, CNT agglomeration was studied via a combination of SEM imaging and Raman scanning. We found that at sufficiently low strains, energy dissipation in composites with high CNT alignment is not a function of applied strain, as no interfacial slip occurs between the CNTs and PS. However, below the interfacial slip strain threshold, damping scales monotonically with CNT content, which indicates the prevalence of CNT-CNT friction dissipation mechanisms within agglomerates. At higher strains, interfacial slip also contributes to energy dissipation. However, the increase in damping with strain, especially when CNT agglomerates are present, does not scale linearly with the effective interface area between CNTs and PS, suggesting a significant contribution of friction between CNTs within agglomerates to energy dissipation at large strains. In addition, for the first time, a comparison between the energy dissipation in randomly oriented and aligned CNT composites was made. It is inferred that matrix plasticity and tearing caused by misorientation of CNTs with the loading direction is a major cause of energy dissipation. The results of our research can be used to design composites with high energy dissipation capability, especially for applications where dynamic loading may compromise structural stability and functionality, such as rotary wing structures and antennas.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/27/10/105707DOI Listing

Publication Analysis

Top Keywords

energy dissipation
36
interfacial slip
12
dissipation
10
dissipation mechanisms
8
energy
8
cnt alignment
8
composites high
8
cnt
7
cnts
5
identification energy
4

Similar Publications

The semiconductor copper tungstate (CuWO) may end up in aquatic ecosystems since it has the potential for water decontamination. The toxic effects of CuWO are totally unknown for eukaryotic organisms. In view of this, we aimed to evaluate the toxicity of CuWO particles (size of 161.

View Article and Find Full Text PDF

Radiative Cooling Meta-Fabric Integrated with Knitting Perspiration-Wicking and Coating Heat Conduction.

ACS Nano

January 2025

Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.

Radiative cooling is an emerging zero-energy-consumption technology for human body cooling in outdoor scenarios during hot seasons. However, existing radiative cooling textiles are limited by low intrinsic cooling power, high hydrophobicity, and heat-insulating properties, which seriously impede a satisfying cooling effect, perspiration-wicking, and heat dissipation, thus limiting human thermal comfort in practical situations. Here, we developed a radiative cooling meta-fabric that was integrated with high perspiration-wicking and thermal conduction capacity.

View Article and Find Full Text PDF

To study the enhancement effect of carbon nanotubes (CNTs) on the splitting tensile properties of foamed concrete backfill in which cement and fly ash were used as the cementitious materials and natural sand was used as the aggregate, specimens of CNT-modified foamed concrete backfill were prepared. Brazilian splitting tests were used to investigate the splitting tensile strength of the CNT-modified foamed concrete backfill, and the digital speckle correlation method was used to analyze the stress field characteristics and crack expansion law of the specimens during splitting tensile testing. The stress-strain characteristics and energy dissipation laws of the backfill were studied at various static loading rates, and a relationship between the splitting tensile strength, ultimate strain, and loading rate was established.

View Article and Find Full Text PDF

Potato is cultivated all the year round in Pakistan. However, the major crop is the autumn crop which is planted in mid-October and contributes 80-85% of the total production. The abrupt climate change has affected the weather patterns all over the world, resulting in the reduction of the mean air temperature in autumn by almost 1.

View Article and Find Full Text PDF

Two dimensional confinement induced discontinuous chain transitions for augmented electrocaloric cooling.

Nat Commun

January 2025

Department of Polymer Science and Engineering, Key Laboratory of High-Performance Polymer Materials and Technology of MOE, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, China.

Overheating remains a major barrier to chip miniaturization, leading to device malfunction. Addressing the urgent need for thermal management promotes the development of solid-state electrocaloric cooling. However, enhancing passive heat dissipation through two-dimensional materials in electrocaloric polymers typically compromises the electrocaloric effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!