We have constructed recombinant M13 DNA templates containing stretches of oligo (purines) and oligo (pyrimidines). Each of these inserts hinders the advancement of the large fragment of E. coli Pol I during DNA synthesis. The pattern of blockage is independent of changes in KCl or Mg2+ concentrations and pausing is moderately alleviated at lower pH. Blockage is not affected by either the concentration of template or by the position of the DNA primer. The pattern of pause sites is similar for calf thymus DNA polymerase-alpha, implying that replicative barriers are determined by the structure of the DNA at its growing point. There is a lack of correlation between the position of pause sites with different inserts and known alternate DNA structures. Thus, the homo-oligomeric inserts may possess a different structure when complexed with DNA polymerase. This concept accounts for the appearance of unique new upstream and downstream pause sites that result from the insertion of each oligonucleotide.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-291x(89)91789-0DOI Listing

Publication Analysis

Top Keywords

pause sites
12
dna
8
sequence specificity
4
specificity pausing
4
pausing dna
4
dna polymerases
4
polymerases constructed
4
constructed recombinant
4
recombinant m13
4
m13 dna
4

Similar Publications

Ribosome pausing in amylase producing Bacillus subtilis during long fermentation.

Microb Cell Fact

January 2025

Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands.

Background: Ribosome pausing slows down translation and can affect protein synthesis. Improving translation efficiency can therefore be of commercial value. In this study, we investigated whether ribosome pausing occurs during production of the α-amylase AmyM by the industrial production organism Bacillus subtilis under repeated batch fermentation conditions.

View Article and Find Full Text PDF

Defining the beginning of a eukaryotic protein-coding gene is relatively simple. It corresponds to the first ribonucleotide incorporated by RNA polymerase II (Pol II) into the nascent RNA molecule. This nucleotide is protected by capping and maintained in the mature messenger RNA (mRNA).

View Article and Find Full Text PDF

Transcription as a double-edged sword in genome maintenance.

FEBS Lett

January 2025

Department of Biochemistry and Molecular Biology.

Genome maintenance is essential for the integrity of the genetic blueprint, of which only a small fraction is transcribed in higher eukaryotes. DNA lesions occurring in the transcribed genome trigger transcription pausing and transcription-coupled DNA repair. There are two major transcription-coupled DNA repair pathways.

View Article and Find Full Text PDF

Drug abuse continues to pose a significant challenge in HIV control efforts. In our investigation, we discovered that cocaine not only upregulates the expression of the DNA-dependent protein kinase (DNA-PK) but also augments DNA-PK activation by enhancing its phosphorylation at S2056. Moreover, DNA-PK phosphorylation triggers the higher localization of the DNA-PK into the nucleus.

View Article and Find Full Text PDF

Uridine insertion/deletion editing of mitochondrial messenger RNAs (mRNAs) in kinetoplastids entails the coordinated action of three complexes. RNA Editing Catalytic Complexes (RECCs) catalyze the enzymatic reactions, while the RNA Editing Substrate Binding Complex (RESC) and RNA Editing Helicase 2 Complex (REH2C) coordinate interactions between RECCs, mRNAs and hundreds of guide RNAs that direct edited sequences. Additionally, numerous auxiliary factors are required for productive editing of specific mRNAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!