Photosensitized rose Bengal-induced phototoxicity on human melanoma cell line under natural sunlight exposure.

J Photochem Photobiol B

Photobiology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, Uttar Pradesh, India. Electronic address:

Published: March 2016

Rose Bengal (RB) is an anionic water-soluble xanthene dye, which used for many years to assess eye cornea and conjunctiva damage. RB showed strong absorption maxima (λmax) under visible light followed by UV-B and UV-A. RB under sunlight exposure showed a time-dependent photodegradation. Our results show that photosensitized RB generates (1)O2 via Type-II photodynamic pathway and induced DNA damage under sunlight/UV-R exposure. 2'dGuO degradation, micronuclei formation, and single- and double-strand breakage were the outcome of photogenotoxicity caused by RB. Quenching studies with NaN3 advocate the involvement of (1)O2 in RB photogenotoxicity. RB induced linoleic acid photoperoxidation, which was parallel to (1)O2-mediated DNA damage. Oxidative stress in A375 cell line (human melanoma cell line) was detected through DCF-DA assay. Photosensitized RB decreased maximum cellular viability under sunlight followed by UV-B and UV-A exposures. Apoptosis was detected as a pattern of cell death through the increased of caspase-3 activity, decreased mitochondrial membrane potential, and PS translocation through inner to outer plasma membrane. Increased cytosolic levels of Bax also advocate the apoptotic cell death. We propose a p53-mediated apoptosis via increased expression of Bax gene and protein. Thus, the exact mechanism behind RB phototoxicity was the involvement of (1)O2, which induced oxidative stress-mediated DNA and membrane damage, finally apoptotic cell death under natural sunlight exposure. The study suggests that after the use of RB, sunlight exposure may avoid to prevent from its harmful effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2015.12.001DOI Listing

Publication Analysis

Top Keywords

sunlight exposure
16
cell death
12
human melanoma
8
melanoma cell
8
natural sunlight
8
uv-b uv-a
8
dna damage
8
involvement 1o2
8
apoptotic cell
8
cell
6

Similar Publications

Background: Multiple sclerosis (MS) onset is caused by genetic and environmental factors. Vitamin D has been identified as contributing environmental risk factor, with higher prevalence at latitudes further from the equator. Mongolia, at 45°N, has limited sunlight exposure, increasing the population's risk for vitamin D deficiency.

View Article and Find Full Text PDF

Zirconium dioxide nanoparticles (ZrO NPs) have gained significant attention due to their excellent bioavailability, low toxicity, and diverse applications in the medical and industrial fields. In this study, ZrO NPs were synthesized using zirconyl oxychloride and the aqueous leaf extract of as a stabilizing agent. Analytical techniques, including various spectroscopy methods and electron microscopy, confirmed the formation of aggregated spherical ZrO NPs, ranging from 15 to 30 nm in size, with mixed-phase structure composed of tetragonal and monoclinic structures.

View Article and Find Full Text PDF

In this study, octenyl succinic acid sodium starch (OSAS) decorated with chitosan (CS) of different molecular weights (50-150 kDa) and concentrations (10-30 mg/mL) was used to stabilize an emulsion coencapsulating with vitamin A (V) and vitamin D (V). The effect of CS decoration on the thermal and UV stability of the emulsion, as well as the underlying mechanism, was elucidated. The incorporation of CS increased the retention rates of V and V by 11.

View Article and Find Full Text PDF

A polyacrylamide gel method has been used to synthesize a variety of polyvalent-transition-metal-doped Ni position of high entropy spinel oxides (NiZnMgCuCo)AlO-800 °C (A) on the basis of NiAlO, and the catalytic activity of A is studied under the synergistic action of peroxymonosulfate (PMS) activation and simulated sunlight. The A containing polyvalent transition metals (Ni, Cu, and Co) can effectively activate PMS and efficiently degrade levofloxacin (LEV) and tetracycline hydrochloride (TCH) under simulated sunlight irradiation. After 90 min of light exposure, the degradation percentages of LEV (50 mg L) and TCH (100 mg L) degrade by the A/PMS/vis system reach 87.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) have shown significant potential in the photocatalytic activation of peroxydisulfate (PDS). Although many MOFs have been investigated for their ability to activate PDS, the impact of structural interpenetration on this process remains underexplored. In this study, MIL-88D(FeNi) and MIL-126(FeNi) were selected to systematically study this effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!