Background: Śilājatu (Shilajit; SJ) is claimed in traditional Indian medical practice to be useful in the treatment of nervous disorders, epilepsy and as antistress.
Aim: To investigate whether SJ possesses antiepileptic and antipsychotic activities in rodents.
Materials And Methods: Isonicotinyl hydrazine (INH), pentylenetetrazole (PTZ), apomorphine, phenytoin, diazepam, haloperidol and other chemicals of analytical grade were procured from standard companies. The antiepileptic activity of SJ was assessed using maximal electro shock (MES)-induced seizures in rats, INH and PTZ-induced seizures in mice. The antipsychotic effect of SJ was evaluated using apomorphine-induced climbing and stereotyped behaviours respectively, in mice and rats.
Settings And Designs: SJ (25 and 50 mg/kg, p.o.) was given orally once daily for 15 days in all the rodent models. On the test day, SJ was administered 1 h prior to electric shock or chemical inducers (INH/PTZ/apomorphine) in experimental animals; the animals were then observed for different phases of seizures and psychotic behaviours. In addition, gamma-aminobutyric acid (GABA) content in the brain of rats and mice was estimated in seizure models.
Statistical Analysis: The data were expressed as mean ± standard error of mean. Statistical comparisons were performed by one-way ANOVA followed by Tukey's post-test using Graph Pad Prism version 5.0, USA. A P < 0.05 was considered significant.
Results And Conclusions: SJ pretreatment significantly inhibited the seizures induced by MES, INH and PTZ in a dose dependent manner. Further, SJ augmented brain GABA levels to normal, decreased by INH and PTZ in mice brain. SJ pretreatment also significantly inhibited the climbing and stereotyped behaviours induced by apomorphine. The present data seems to confirm the antiepileptic activity of SJ which may be because of enhancing the GABAergic system. The antipsychotic activity observed may be due to anti-dopaminergic and/or GABA-mimetic actions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728862 | PMC |
http://dx.doi.org/10.4103/0257-7941.171675 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!