The ability of plasmids to propagate in Saccharomyces cerevisiae has been instrumental in defining eukaryotic chromosomal control elements. Stable propagation demands both plasmid replication, which requires a chromosomal replication origin (i.e., an ARS), and plasmid distribution to dividing cells, which requires either a chromosomal centromere for segregation or a plasmid-partitioning element. While our knowledge of yeast ARSs and centromeres is relatively advanced, we know less about chromosomal regions that can function as plasmid partitioning elements. The Rap1 protein-binding site (RAP1) present in transcriptional silencers and telomeres of budding yeast is a known plasmid-partitioning element that functions to anchor a plasmid to the inner nuclear membrane (INM), which in turn facilitates plasmid distribution to daughter cells. This Rap1-dependent INM-anchoring also has an important chromosomal role in higher-order chromosomal structures that enhance transcriptional silencing and telomere stability. Thus, plasmid partitioning can reflect fundamental features of chromosome structure and biology, yet a systematic screen for plasmid partitioning elements has not been reported. Here, we couple deep sequencing with competitive growth experiments of a plasmid library containing thousands of short ARS fragments to identify new plasmid partitioning elements. Competitive growth experiments were performed with libraries that differed only in terms of the presence or absence of a centromere. Comparisons of the behavior of ARS fragments in the two experiments allowed us to identify sequences that were likely to drive plasmid partitioning. In addition to the silencer RAP1 site, we identified 74 new putative plasmid-partitioning motifs predicted to act as binding sites for DNA binding proteins enriched for roles in negative regulation of gene expression and G2/M-phase associated biology. These data expand our knowledge of chromosomal elements that may function in plasmid partitioning and suggest underlying biological roles shared by such elements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4825667 | PMC |
http://dx.doi.org/10.1534/g3.116.027904 | DOI Listing |
Biochem Soc Trans
December 2024
Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.
The 2-micron plasmid residing within the host budding yeast Saccharomyces cerevisiae nucleus serves as a model system for understanding the mechanism of segregation and stable maintenance of circular endogenously present extrachromosomal DNA in eukaryotic cells. The plasmid is maintained at a high average copy number (40-60 copies per yeast cell) through generations despite there is no apparent benefit to the host. Notably, the segregation mechanism of 2-micron plasmid shares significant similarities with those of bacterial low-copy-number plasmids and episomal forms of viral genomes in mammalian cells.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Institute of Bioinformatics and Applied Biotechnology (IBAB), Bangalore, Karnataka, India.
Myxobacteria or order Myxococcales (old nomenclature) or phylum Myxococcota (new terminology) are fascinating organisms well known for their diverse peculiar physiological, taxonomic, and genomic properties. Researchers have long sought to identify plasmids within these organisms, yet thus far, only two organisms from different families have been found to harbor a plasmid. This study delves into the putative evolution of one of these plasmids, i.
View Article and Find Full Text PDFBMC Genomics
October 2024
Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa.
Microbiol Spectr
November 2024
Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA.
Unlabelled: Despite the dissemination of multidrug resistance plasmids, including those carrying virulence genes in spp., efficient plasmid curing tools are lacking. Plasmid partitioning and multimer resolution systems are attractive targets for plasmid cure.
View Article and Find Full Text PDFJ Bacteriol
October 2024
Molecular Microbiology and Structural Biochemistry, Université de Lyon, CNRS, Lyon, France.
Chromosome segregation in bacteria is a critical process ensuring that each daughter cell receives an accurate copy of the genetic material during cell division. Active segregation factors, such as the ParABS system or SMC complexes, are usually essential for this process, but they are surprisingly dispensable in . Rather, chromosome segregation in relies on the protein Regulator of Chromosome Segregation (RocS), although the molecular mechanisms involved remain elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!