Distinct Mechanisms for Distractor Suppression and Target Facilitation.

J Neurosci

Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford OX1 3UD, United Kingdom.

Published: February 2016

Unlabelled: It is well established that preparatory attention improves processing of task-relevant stimuli. Although it is often more important to ignore task-irrelevant stimuli, comparatively little is known about preparatory attentional mechanisms for inhibiting expected distractions. Here, we establish that distractor inhibition is not under the same top-down control as target facilitation. Using a variant of the Posner paradigm, participants were cued to either the location of a target stimulus, the location of a distractor, or were provided no predictive information. In Experiment 1, we found that participants were able to use target-relevant cues to facilitate target processing in both blocked and flexible conditions, but distractor cueing was only effective in the blocked version of the task. In Experiment 2, we replicate these findings in a larger sample and leveraged the additional statistical power to perform individual differences analyses to tease apart potential underlying mechanisms. We found no evidence for a correlation between these two types of benefit, suggesting that flexible target cueing and distractor suppression depend on distinct cognitive mechanisms. In Experiment 3, we use EEG to show that preparatory distractor suppression is associated with a diminished P1, but we found no evidence to suggest that this effect was mediated by top-down control of oscillatory activity in the alpha band (8-12 Hz). We conclude that flexible top-down mechanisms of cognitive control are specialized for target-related attention, whereas distractor suppression only emerges when the predictive information can be derived directly from experience. This is consistent with a predictive coding model of expectation suppression.

Significance Statement: If you were told to ignore a white bear, you might find it quite difficult. Holding something in working memory is thought to automatically facilitate feature processing, even if doing so is detrimental to the current task. Despite this paradox, it is often assumed that distractor suppression is controlled via similar top-down mechanisms of attention that prepare brain areas for target enhancement. In particular, low-frequency oscillations in visual cortex appear especially well suited for gating task-irrelevant information. We describe the results of a series of studies exploring distractor suppression and challenge this popular notion. We draw on behavioral and EEG evidence to show that selective distractor suppression operates via an alternative mechanism, such as expectation suppression within a predictive coding framework.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4748069PMC
http://dx.doi.org/10.1523/JNEUROSCI.2133-15.2016DOI Listing

Publication Analysis

Top Keywords

distractor suppression
28
distractor
10
suppression
8
target facilitation
8
top-down control
8
top-down mechanisms
8
predictive coding
8
target
6
mechanisms
5
distinct mechanisms
4

Similar Publications

This paper has two concurrent goals. On one hand, we hope it will serve as a simple primer in the use of linear mixed modelling (LMM) for inferential statistical analysis of multimodal data. We describe how LMM can be easily adopted for the identification of trial-wise relationships between disparate measures and provide a brief cookbook for assessing the suitability of LMM in your analyses.

View Article and Find Full Text PDF

Amplitude compression is an indispensable feature of contemporary audio production and especially relevant in modern hearing aids. The cortical fate of amplitude-compressed speech signals is not well-studied, however, and may yield undesired side effects: We hypothesize that compressing the amplitude envelope of continuous speech reduces neural tracking. Yet, leveraging such a 'compression side effect' on unwanted, distracting sounds could potentially support attentive listening if effectively reducing their neural tracking.

View Article and Find Full Text PDF

Interference from a salient distractor is typically reduced when the appearance of the distractor follows either spatial or feature-based regularities. Although there is a growing body of literature on distractor location learning, the understanding of distractor feature learning remains limited. In the current study, we investigated distractor feature learning by using EEG measures.

View Article and Find Full Text PDF

Navigating visually complex environments requires focusing on relevant information while filtering out (salient) distractions. The signal suppression hypothesis posits that salient stimuli generate an automatic saliency signal that captures attention unless overridden by learned suppression mechanisms. In support of this, ERP studies have demonstrated that salient stimuli that do not capture attention elicit a distractor positivity (PD), a putative neural index of suppression.

View Article and Find Full Text PDF

Distractor-specific control adaptation in multidimensional environments.

Nat Hum Behav

January 2025

Department of Psychological and Brain Sciences, Washington University in St. Louis, St Louis, MO, USA.

Goal-directed behaviour requires humans to constantly manage and switch between multiple, independent and conflicting sources of information. Conventional cognitive control tasks, however, only feature one task and one source of distraction. Therefore, it is unclear how control is allocated in multidimensional environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!