Microbial transcriptome profiling of black band disease in a Faviid coral during a seasonal disease peak.

Dis Aquat Organ

Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, PO Box 653, Be'er-Sheva 8410501, Israel.

Published: February 2016

The etiology of black band disease (BBD), a persistent, globally distributed coral disease characterized by a dark microbial mat, is still unclear. A metatranscriptomics approach was used to unravel the roles of the major mat constituents in the disease process. By comparing the transcriptomes of the mat constituents with those of the surface microbiota of diseased and healthy corals, we showed a shift in bacterial composition and function in BBD-affected corals. mRNA reads of Cyanobacteria, Bacteroidetes and Firmicutes phyla were prominent in the BBD mat. Cyanobacterial adenosylhomocysteinase, involved in cyanotoxin production, was the most transcribed gene in the band consortium. Pathogenic and non-pathogenic forms of Vibrio spp., mainly transcribing the thiamine ABC transporter, were abundant and highly active in both the band and surface tissues. Desulfovibrio desulfuricans was the primary producer of sulfide in the band. Members of the Bacilli class expressed high levels of rhodanese, an enzyme responsible for cyanide and sulfide detoxification. These results offer a first look at the varied functions of the microbiota in the disease mat and surrounding coral surface and enabled us to develop an improved functional model for this disease.

Download full-text PDF

Source
http://dx.doi.org/10.3354/dao02952DOI Listing

Publication Analysis

Top Keywords

black band
8
band disease
8
mat constituents
8
disease
7
band
5
mat
5
microbial transcriptome
4
transcriptome profiling
4
profiling black
4
disease faviid
4

Similar Publications

In this study, biopolymer composites based on chitosan (CS) with enhanced optical properties were functionalized using Manganese metal complexes and black tea solution dyes. The results indicate that CS with Mn-complexes can produce polymer hybrids with high absorption, high refractive index and controlled optical band gaps, with a significant reduction from 6.24 eV to 1.

View Article and Find Full Text PDF

2-Cyanoindene is one of the few specific aromatic or polycyclic aromatic hydrocarbon (PAH) molecules positively identified in Taurus molecular cloud-1 (TMC-1), a cold, dense molecular cloud that is considered the nearest star-forming region to Earth. We report cryogenic mid-infrared (550-3200 cm) and visible (16,500-20,000 cm, over the ← electronic transition) spectra of 2-cyanoindene radical cations (2CNI), measured using messenger tagging (He and Ne) photodissociation spectroscopy. The infrared spectra reveal the prominence of anharmonic couplings, particularly over the fingerprint region.

View Article and Find Full Text PDF

Interlayer coupling in 2D heterostructures can result in a reduction of the rotation symmetry and the generation of quantum phenomena. Although these effects have been demonstrated in transition metal dichalcogenides (TMDs) with mismatched interfaces, the role of band hybridization remains unclear. In addition, the creation of flat bands at the valence band maximum (VBM) of TMDs is still an open challenge.

View Article and Find Full Text PDF

Black phosphorus (BP), a promising two-dimensional material, faces significant challenges for its applications due to its instability in air and water. Herein, molecular dynamics simulations reveal that a self-assembled ferrocene (FeCp) molecular layer can form on BP surfaces and remain stable in aqueous environments, predicting its effectiveness for passivation. This theoretical finding is corroborated by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, Raman spectroscopy, and optical microscopy observations.

View Article and Find Full Text PDF

Shell colour luminance of Cuban painted snails, Polymita picta and Polymita muscarum (Gastropoda: Cepolidae).

PLoS One

January 2025

Facultad de Ciencias Naturales y Exactas, Departamento de Biología y Geografía, Universidad de Oriente, Santiago de Cuba, Cuba.

Climate change is a global environmental threat, directly affecting biodiversity. Terrestrial gastropods are particularly susceptible to alterations in temperature and humidity and have develop morph-physiological and behavioural adaptations in this regard. Shell colour polymorphism and its potential implication for thermoresistance constitute an unexplored field in Neotropical land snails.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!