Learning and memory formation are known to require dynamic CpG (de)methylation and gene expression changes. Here, we aimed at establishing a genome-wide DNA methylation map of the zebra finch genome, a model organism in neuroscience, as well as identifying putatively epigenetically regulated genes. RNA- and MethylCap-seq experiments were performed on two zebra finch cell lines in presence or absence of 5-aza-2'-deoxycytidine induced demethylation. First, the MethylCap-seq methodology was validated in zebra finch by comparison with RRBS-generated data. To assess the influence of (variable) methylation on gene expression, RNA-seq experiments were performed as well. Comparison of RNA-seq and MethylCap-seq results showed that at least 357 of the 3,457 AZA-upregulated genes are putatively regulated by methylation in the promoter region, for which a pathway analysis showed remarkable enrichment for neurological networks. A subset of genes was validated using Exon Arrays, quantitative RT-PCR and CpG pyrosequencing on bisulfite-treated samples. To our knowledge, this study provides the first genome-wide DNA methylation map of the zebra finch genome as well as a comprehensive set of genes of which transcription is under putative methylation control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4750092PMC
http://dx.doi.org/10.1038/srep20957DOI Listing

Publication Analysis

Top Keywords

zebra finch
20
regulated genes
8
gene expression
8
genome-wide dna
8
dna methylation
8
methylation map
8
map zebra
8
finch genome
8
experiments performed
8
genes
5

Similar Publications

Offspring of older breeders frequently show reduced longevity, which has been linked to shorter offspring telomere length. It is currently unknown whether such telomere reduction persists beyond a single generation, as would be the case if germline transmission is involved. In a within-grandmother, multi-generational study using zebra finches, we show that the shorter telomeres observed in F1 offspring of older mothers are still present in the F2 generation even when the breeding age of their F1 mothers is young.

View Article and Find Full Text PDF

Prevalence of in Birds of Iran and its Pathological Findings: A Review study.

Arch Razi Inst

June 2024

Department of Microbiology, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.

is a flagellated protozoan parasite that affects numerous avian species worldwide, causing a range of diseases collectively termed trichomonosis. This review study aimed to present a comprehensive analysis of the prevalence of in birds of Iran, along with an exploration of its associated pathological findings. Through an extensive search of published studies, scientific databases, and relevant literature, we identified several studies conducted in Iran that focused on the prevalence of in different bird populations and their pathological effect.

View Article and Find Full Text PDF

Sensory experience during development has lasting effects on perception and neural processing. Exposing juvenile animals to artificial stimuli influences the tuning and functional organization of the auditory cortex, but less is known about how the rich acoustical environments experienced by vocal communicators affect the processing of complex vocalizations. Here, we show that in zebra finches (), a colonial-breeding songbird species, exposure to a naturalistic social-acoustical environment during development has a profound impact on auditory perceptual behavior and on cortical-level auditory responses to conspecific song.

View Article and Find Full Text PDF

Zebra finches undergo a gradual refinement of their vocalizations, transitioning from variable juvenile songs to the stereotyped song of adulthood. To investigate the neural mechanisms underlying song crystallization-a critical phase in this developmental process-we performed intracellular recordings in HVC (a premotor nucleus essential for song learning and production) of juvenile birds. We then compared these recordings to previously published electrophysiological data from adult birds.

View Article and Find Full Text PDF

Vocal learners, including humans and songbirds, acquire their complex vocalizations by accurately memorizing and imitating the vocal patterns of other individuals. In songbirds, the caudomedial nidopallium (NCM), considered the secondary auditory region, has been suggested to play a critical role in memorizing and recognizing the songs of tutors. However, the mechanisms by which NCM neurons encode the acoustic information of tutor song are not yet fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!