The normal organization and plasticity of the cutaneous core of the thalamic principal somatosensory nucleus (ventral caudal, Vc) have been studied by single-neuron recordings and microstimulation in patients undergoing awake stereotactic operations for essential tremor (ET) without apparent somatic sensory abnormality and in patients with dystonia or chronic pain secondary to major nervous system injury. In patients with ET, most Vc neurons responded to one of the four stimuli, each of which optimally activates one mechanoreceptor type. Sensations evoked by microstimulation were similar to those evoked by the optimal stimulus only among rapidly adapting neurons. In patients with ET, Vc was highly segmented somatotopically, and vibration, movement, pressure, and sharp sensations were usually evoked by microstimulation at separate sites in Vc. In patients with conditions including spinal cord transection, amputation, or dystonia, RFs were mismatched with projected fields more commonly than in patients with ET. The representation of the border of the anesthetic area (e.g., stump) or of the dystonic limb was much larger than that of the same part of the body in patients with ET. This review describes the organization and reorganization of human Vc neuronal activity in nervous system injury and dystonia and then proposes basic mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4922463 | PMC |
http://dx.doi.org/10.1152/jn.00611.2015 | DOI Listing |
Neurosci Lett
January 2025
Department of Biomedical Engineering, School of ICT Convergence Engineering, College of Science & Technology, Konkuk University, 268 Chungwon-daero, Chungju-si, Chungcheongbuk-do, 27478, Republic of Korea. Electronic address:
Laser-induced plasma technology provides a novel method for generating tactile sensations without physical contact, offering precise and controlled stimulation. However, the impact of varying energy levels on human cognitive and perceptual responses is not yet fully understood. This study aimed to present tactile sensations using laser-induced plasma in a non-contact manner and investigate the cognitive characteristics linked to changes in the plasma's energy parameters, specifically Pulse Width (PW) and Set Current (SC).
View Article and Find Full Text PDFFood Res Int
January 2025
Instituto Federal de Educação, Ciência e Tecnologia (IFRJ), Departamento de Alimentos, Rio de Janeiro, RJ, Brazil. Electronic address:
The growing interest in reducing sugar and fat in processed foods has led to the use of fibers with prebiotic potential, such as inulin and xylooligosaccharide (XOS), as substitutes capable of enhancing nutritional value and sensory quality. Using an innovative approach with Free Just-About-Right (FREE JAR) to obtain Drivers of Liking, this study evaluated consumer perception (n = 129) regarding the impact of adding inulin and XOS to Dulce de Leche with or without fat reduction. The term "Too Greasy" was significant for the product made with whole milk; however, adding inulin and XOS mitigated this effect and promoted the sensation of JAR sweetness.
View Article and Find Full Text PDFExp Brain Res
January 2025
Faculty of Sport, Technology and Health Sciences, St. Mary's University, Twickenham, Middlesex, UK.
The aim of this study was to assess if ischaemic preconditioning (IPC) can reduce pain perception and enhance corticospinal excitability during voluntary contractions. In a randomised, within-subject design, healthy participants took part in three experimental visits after a familiarisation session. Measures of pressure pain threshold (PPT), maximum voluntary isometric force, voluntary activation, resting twitch force, corticospinal excitability and corticospinal inhibition were performed before and ≥10 min after either, unilateral IPC on the right leg (3 × 5 min); a sham protocol (3 × 1 min); or a control (no occlusion).
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Electrical Engineering, University of Belgrade, 11000 Belgrade, Serbia.
Traditional tactile brain-computer interfaces (BCIs), particularly those based on steady-state somatosensory-evoked potentials, face challenges such as lower accuracy, reduced bit rates, and the need for spatially distant stimulation points. In contrast, using transient electrical stimuli offers a promising alternative for generating tactile BCI control signals: somatosensory event-related potentials (sERPs). This study aimed to optimize the performance of a novel electrotactile BCI by employing advanced feature extraction and machine learning techniques on sERP signals for the classification of users' selective tactile attention.
View Article and Find Full Text PDFJ Clin Med
December 2024
Section Cochlear Implantation, Department of Otorhinolaryngology, University Hospital of Munich (LMU), 81377 Munich, Germany.
: Before a cochlear implant is considered, patients undergo various audiological tests to assess their suitability. One key test measures the auditory brainstem response (ABR) to acoustic stimuli. However, in some cases, even with maximum sound stimulation, no response is detected.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!