Heterococcoliths are micron-scale calcite platelets produced by coccolithophores. They have been the most abundant and continuous fossil record over the last 215 million years (Myr), offering great potential for geochemical studies, although the heterococcolith fossil record remains underutilised in this domain. We have mapped heterococcoliths' composition using X-ray fluorescence (XRF) with a 100-nm resolution beam to decipher element distributions in heterococcoliths and to investigate the potential development of geochemical proxies for palaeoceanography. The study presents two Middle Jurassic Watznaueria britannica heterococcoliths from Cabo Mondego, Portugal. XRF analysis was performed with a 17 keV incident energy beam at the European Synchrotron Radiation Facility ID22NI beamline to study elements from Sr down to S. Ca, Sr and Mn are distributed following the heterococcolith crystalline arrangement. Cl, Br and S display an homogeneous distribution, whereas K, Fe, Cu, Zn and Rb are concentrated at the edges and in the central area of the heterococcoliths. Distributions of K, Fe, Ti, Fe, Cu, Zn, Rb and to a lesser extent V and Cr are highly influenced by clay contamination and peripheral diagenetic overgrowth. Mn is related to diagenetic Mn-rich CaCO3 overgrowth on top of or between heterococcoliths shields. Cl and Br are likely to be present in heterococcoliths inside interstitial nano-domains. We assume that the cytoplasm [Cl(-) ] and [Br(-) ] are mediated and constant during heterococcolithogenesis. Assuming a linear correlation between cytoplasm [Cl(-) ] and sea water [Cl(-) ], heterococcolith Cl may have potential as a salinity proxy. As S is incorporated into heterococcoliths by sulphated polysaccharides, our study suggests a role for such polysaccharides in heterococcolithogenesis for at least 170 Myr. The low Sr/Ca in the W. britannica specimens studied here may either highlight an unusual cellular physiology of Mesozoic coccolithophores or result from low growth rates in oligotrophic environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gbi.12177 | DOI Listing |
Mar Pollut Bull
December 2024
Aix Marseille University, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France; Department Water-Environment-Oceanography, University of Science and Technology of Hanoi (USTH), Vietnamese Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Hanoi 100000, Viet Nam; IRD, Chulalongkorn University, 254 Henri Dunant Road, Pathumwan, 10330 Bangkok, Thailand.
Halong Bay (northern Vietnam) is heavily affected by human activities. Metals and metalloids (e.g.
View Article and Find Full Text PDFAstrobiology
December 2024
Department of Mineralogy, University of Hannover, Germany.
Nontraditional stable isotopes of bioactive metals emerged as novel proxies for reconstructing the biogeochemical cycling of metals, which serve as cofactors in major metabolic pathways. The fractionation of metal isotopes between ambient fluid and microorganisms is ultimately recorded in authigenic minerals, such as carbonates, which makes them potentially more reliable than standard biomarkers in organic matter. Stromatolitic carbonates are geochemical archives that allow for the study of the long-term interplay of the biosphere, atmosphere, and hydrosphere through deep time, with the unique potential to investigate early life environments and the evolution of the metallome.
View Article and Find Full Text PDFThe microfossil record contains abundant, diverse, and well-preserved fossils spanning multiple trophic levels from primary producers to apex predators. In addition, microfossils often constitute and are preserved in high abundances alongside continuous high-resolution geochemical proxy records. These characteristics mean that microfossils can provide valuable context for understanding the modern climate and biodiversity crises by allowing for the interrogation of spatiotemporal scales well beyond what is available in neo-ecological research.
View Article and Find Full Text PDFSci Rep
October 2024
UMR 6266 IDEES, University of Rouen Normandy/CNRS, Mont St-Aignan, France.
Drought events are increasingly impacting Europe. The study of past droughts helps disentangle the different factors that trigger hydrological drought, helping to forecast future drought severity. Here we identify the historical drought events of the twentieth and twenty-first centuries in geochemical records of a stalagmite from Caumont cave in Northern France and develop a mechanistic understanding of their root causes.
View Article and Find Full Text PDFSci Rep
October 2024
School of Earth Sciences, University of Bristol, Bristol, UK.
Biofilms are mucilaginous-organic layers produced by microbial activity including viruses. Growing biofilms form microbial mats which enhance sediment stability by binding particles with extracellular polymeric substances and promoting growth through nutrient cycling and organic matter accumulation. They preferentially develop at the sediment-water interface of both marine and non-marine environments, and upon the growing surfaces of modern tufa and travertine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!