While engineered nanomaterials (ENMs) are increasingly incorporated into industrial processes and consumer products, the potential biological effects and health outcomes of exposure remain unknown. Novel advanced direct visualization techniques that require less time, cost, and resource investment than electron microscopy (EM) are needed for identifying and locating ENMs in biological samples. Hyperspectral imaging (HSI) combines spectrophotometry and imaging, using advanced optics and algorithms to capture a spectrum from 400 to 1000 nm at each pixel in an enhanced dark-field microscopic (EDFM) image. HSI-EDFM can be used to confirm the identity of the materials of interest in a sample and generate an image "mapping" their presence and location in a sample. Hyperspectral mapping is particularly important for biological samples, where ENM morphology is visually indistinct from surrounding tissue structures. While use of HSI (without mapping) is increasing, no studies to date have compared results from hyperspectral mapping with conventional methods. Thus, the objective of this study was to utilize EDFM-HSI to locate, identify, and map metal oxide ENMs in ex vivo histological porcine skin tissues, a toxicological model of cutaneous exposure, and compare findings with those of Raman spectroscopy (RS), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). Results demonstrate that EDFM-HSI mapping is capable of locating and identifying ENMs in tissue, as confirmed by conventional methods. This study serves as initial confirmation of EDFM-HSI mapping as a novel and higher throughput technique for ENM identification in biological samples, and serves as the basis for further protocol development utilizing EDFM-HSI for semiquantitation of ENMs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jemt.22637DOI Listing

Publication Analysis

Top Keywords

biological samples
16
hyperspectral imaging
8
electron microscopy
8
hyperspectral mapping
8
conventional methods
8
edfm-hsi mapping
8
biological
5
enms
5
mapping
5
hyperspectral
4

Similar Publications

Molybdenum blue colorimetry (MBC) is the dominant, well-established method used for determining total P in environmental media, including in organismal tissues. However, other elemental methods for P determination are available, including inductively coupled plasma mass spectrometry (ICP-MS). Given the extensive literature using MBC to determine P in organismal samples, it is important to assess P analyses by ICP-MS and MBC to ensure that the two methods produce comparable data.

View Article and Find Full Text PDF

Objective: Aim: To evaluate the expression levels of SOX-10 in tissues of bladder tumor and to prove the correlation between SOX-10 expression and clinicopathological characteristics of bladder tumors, including patient age, sex, tumor grade, and muscle invasion.

Patients And Methods: Materials and Methods: Forty formalin fixed paraffin embedded FFPE tissue blocks gathered by transurethral resection of bladder tumor are collected from teaching hospitals at Al-Najaf governorate. Those blocks were stained by hematoxylin and eosin.

View Article and Find Full Text PDF

Immunohistochemical evaluation of GATA-3 in patients with urinary bladder cancer.

Wiad Lek

January 2025

DEPARTMENT OF GENERAL PATHOLOGY AND FORENSIC MEDICINE, COLLAGE OF MEDICINE, UNIVERSITY OF KUFA, KUFA, IRAQ.

Objective: Aim: To analyze expression levels of GATA-3 in bladder tumor tissues and to prove a relation between expression of GATA-3 and clinicopathological characteristics of bladder tumors, including patient age, sex, tumor grade, and muscle invasion.

Patients And Methods: Materials and Methods: Forty formalin fixed paraffin embedded (FFPE) tissue blocks obtained from bladder tumor by transurethral resection are collected from teaching hospitals at Al-Najaf governorate. Those blocks are stained by using hematoxylin and eosin stain.

View Article and Find Full Text PDF

Structural insights into the role of reduced cysteine residues in SOD1 amyloid filament formation.

Proc Natl Acad Sci U S A

February 2025

Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Republic of Korea.

The formation of superoxide dismutase 1 (SOD1) filaments has been implicated in amyotrophic lateral sclerosis (ALS). Although the disulfide bond formed between Cys57 and Cys146 in the active state has been well studied, the role of the reduced cysteine residues, Cys6 and Cys111, in SOD1 filament formation remains unclear. In this study, we investigated the role of reduced cysteine residues by determining and comparing cryoelectron microscopy (cryo-EM) structures of wild-type (WT) and C6A/C111A SOD1 filaments under thiol-based reducing and metal-depriving conditions, starting with protein samples possessing enzymatic activity.

View Article and Find Full Text PDF

Leveraging Network Target Theory for Efficient Prediction of Drug-Disease Interactions: A Transfer Learning Approach.

Adv Sci (Weinh)

January 2025

Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China.

Efficient virtual screening methods can expedite drug discovery and facilitate the development of innovative therapeutics. This study presents a novel transfer learning model based on network target theory, integrating deep learning techniques with diverse biological molecular networks to predict drug-disease interactions. By incorporating network techniques that leverage vast existing knowledge, the approach enables the extraction of more precise and informative drug features, resulting in the identification of 88,161 drug-disease interactions involving 7,940 drugs and 2,986 diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!