Defining a stem cell hierarchy in the intestine: markers, caveats and controversies.

J Physiol

Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, 97239, USA.

Published: September 2016

The past decade has appreciated rapid advance in identifying the once elusive intestinal stem cell (ISC) populations that fuel the continual renewal of the epithelial layer. This advance was largely driven by identification of novel stem cell marker genes, revealing the existence of quiescent, slowly- and active-cycling ISC populations. However, a critical barrier for translating this knowledge to human health and disease remains elucidating the functional interplay between diverse stem cell populations. Currently, the precise hierarchical and regulatory relationships between these ISC populations are under intense scrutiny. The classical theory of a linear hierarchy, where quiescent and slowly-cycling stem cells self-renew but replenish an active-cycling population, is well established in other rapidly renewing tissues such as the haematopoietic system. Efforts to definitively establish a similar stem cell hierarchy within the intestinal epithelium have yielded conflicting results, been difficult to interpret, and suggest non-conventional alternatives to a linear hierarchy. While these new and potentially paradigm-shifting discoveries are intriguing, the field will require development of a number of critical tools, including highly specific stem cell marker genes along with more rigorous experimental methodologies, to delineate the complex cellular relationships within this dynamic organ system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5009783PMC
http://dx.doi.org/10.1113/JP271651DOI Listing

Publication Analysis

Top Keywords

stem cell
24
isc populations
12
cell hierarchy
8
cell marker
8
marker genes
8
linear hierarchy
8
cell
6
stem
6
defining stem
4
hierarchy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!