A series of fluorescent "push-pull" tetrathia[9]helicenes based on quinoxaline (acceptor) fused with tetrathia[9]helicene (donor) derivatives was synthesized for control of the excited-state dynamics and circularly polarized luminescence (CPL) properties. In this work, introduction of a quinoxaline onto the tetrathia[9]helicene skeleton induced the "push-pull" character, which was enhanced by further introduction of an electron-releasing Me2 N group or an electron-withdrawing NC group onto the quinoxaline unit (denoted as Me2 N-QTTH and NC-QTTH, respectively). These trends were successfully discussed in terms of by electrochemical measurements and density functional theory (DFT) calculations. As a consequence, significant enhancements in the fluorescence quantum yields (ΦFL ) were achieved. In particular, the maximum ΦFL of Me2 N-QTTH was 0.43 in benzene (NC-QTTH: ΦFL =0.30), which is more than 20 times larger than that of a pristine tetrathia[9]helicene (denoted as TTH; ΦFL =0.02). These enhancements were also explained by kinetic discussion of the excited-state dynamics such as fluorescence and intersystem crossing (ISC) pathways. Such significant enhancements of the ΦFL values thus enabled us to show the excellent CPL properties. The value of anisotropy factor gCPL (normalized difference in emission of right-handed and left-handed circularly polarized light) was estimated to be 3.0 × 10(-3) for NC-QTTH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201504048 | DOI Listing |
J Chem Theory Comput
January 2025
HUN-REN Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary.
The assessment of electronic structure descriptions utilized in the simulation of the ultrafast excited-state dynamics of Fe(II) complexes is presented. Herein, we evaluate the performance of the RPBE, OPBE, BLYP, B3LYP, B3LYP*, PBE0, TPSSh, CAM-B3LYP, and LC-BLYP (time-dependent) density functional theory (DFT/TD-DFT) methods in full-dimensional trajectory surface hopping (TSH) simulations carried out on linear vibronic coupling (LVC) potentials. We exploit the existence of time-resolved X-ray emission spectroscopy (XES) data for the [Fe(bmip)] and [Fe(terpy)] prototypes for dynamics between metal-to-ligand charge-transfer (MLCT) and metal-centered (MC) states, which serve as a reference to benchmark the calculations (bmip = 2,6-bis(3-methyl-imidazole-1-ylidine)-pyridine, terpy = 2,2':6',2″-terpyridine).
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China.
As the investigation of high efficiency thermally activated delayed fluorescence (TADF) materials become more mature, regulating the emission properties for single organic luminescence molecules has gained increasing interest recently. Herein, the donor-acceptor compounds F-AQ comprised of fluorene and anthraquinone is reported, and it exhibits a polymorphism with muti-color emission and TADF from high-level intersystem crossing (hRISC). The photodynamics and excited-state transient species were studied by femtosecond transient absorption (fs-TA) spectroscopy.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, Seoul National University, Seoul 151-747, South Korea.
ConspectusWhile traditional quantum chemical theories have long been central to research, they encounter limitations when applied to complex situations. Two of the most widely used quantum chemical approaches, Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TDDFT), perform well in cases with relatively weak electron correlation, such as the ground-state minima of closed-shell systems (Franck-Condon region). However, their applicability diminishes in more demanding scenarios.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Milano, 20134, Italy.
We introduce a family of membrane-targeted azobenzenes (MTs) with a push-pull character as a new tool for cell stimulation. These molecules are water soluble and spontaneously partition in the cell membrane. Upon light irradiation, they isomerize from trans to cis, changing the local charge distribution and thus stimulating the cell response.
View Article and Find Full Text PDFChemistry
December 2024
Indian Institute of Technology Kanpur, Chemistry, Department of Chemistry, Indian Institute of Technology Kanpur, 208016, Kanpur, INDIA.
Herein, the photophysical, photochemical properties and photogenerated excited state dynamics of two new Ru(II) complexes, viz. [Ru(p-ttp)(bpy)(PTA)]2+ [1]2+, [Ru(p-ttp)(phen)(PTA)]2+ [2]2+ having a phosphorus-based ligand PTA [p-ttp = p-tolyl terpyridine; bpy = 2,2'-bipyridyl; phen = 1,10-phenthroline and PTA = 1,3,5-triaza-7-phosphaadamantane] are reported. Upon excitation with 470 nm LED, [1]2+ and [2]2+ neither undergo ligand release nor exhibit room temperature luminescence/1O2 generation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!