Silicon quantum dots (Si-QDs) represent a well-known QD fluorophore that can emit throughout the visible spectrum depending on the interface structure and surface functional group. Detection of nitroaromatic compounds by monitoring the luminescence response of the sensor material (typically fluorescent polymers) currently forms the basis of new explosives sensing technologies. Freestanding silicon QDs may represent a benign alternative with a high degree of chemical and physical versatility. Here, we investigate dodecyl and amine-terminated Si-QD luminescence response to the presence of nitrobenzene and dinitrotoluene (DNT) in various solid, solution, and vapor forms. For dinitrotoluene vapor the 3σ detection limit was 6 ppb for monomer-terminated QDs. For nitroaromatics dissolved in toluene the detection limit was on the order of 400 nM, corresponding to ∼100 pg of material distributed over ∼1 cm(2) on the sensor surface. Solid traces of nitroaromatics were also easily detectable via a simple 'touch test'. The samples showed minimal interference effects from common contaminants such as water, ethanol, and acetonitrile. The sensor can be as simple and inexpensive as a small circle of filter paper dipped into a QD solution, with a single vial of QDs able to make hundreds of these sensors. Additionally, a trial fiber-optic sensor device was tested by applying the QDs to one end of a 2 × 2 fiber coupler and exposing them to controlled DNT vapor. Finally, the quenching mechanism was explored via luminescence dynamics measurements and is different for blue (amine) and red (dodecyl) fluorescent silicon QDs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/27/10/105501 | DOI Listing |
Light Sci Appl
January 2025
Executive Management College of CHN ENERGY, No.7 Binhe Avenue, North District of Future Science City, Changping District, Beijing, 102211, China.
In 2012, Prof. Henry Snaith demonstrated the first solid-state perovskite solar cell (PSC) with an efficiency of 10.9%, igniting a surge of interest and research into perovskite materials for their potential to revolutionize the photovoltaic (PV) industry.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
Conventional fluorescent probes with weak fluorescence signals and aggregation-caused quenching effect limits in biomarkers detection, thus requiring many labeled target molecules to combine their output to achieve higher signal-to noise. Here, we harness a "immune-sandwich" based affinity sensor with development of ultrabright aggregation-induced emission luminogens (AIEgens) microspheres as signal reporter. The fabricated sensor can simultaneously permit triple detection formats by naked eye, spectrum, and computer vision counting (termed "NeSCV sensor").
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China. Electronic address:
The depletion of lubricants in (slippery liquid-infused porous surfaces) SLIPS poses a significant challenge to their long-term functionality. While line-shaped rough structures can mitigate lubricant loss to some extent, they often fail to provide the stability required for sustained performance. In this study, we present a novel porous nanoflower aluminum alloy slippery liquid-infused surface (P-NF-AA SLIPS), which integrates a porous framework with a rough nanoflower structure.
View Article and Find Full Text PDFWater Res
December 2024
Soil Chemistry and Chemical Soil Quality Group, Wageningen University & Research, PO BOX 47, Wageningen 6700 AA, the Netherlands.
Binding of glyphosate (PMG) to metal (hydr)oxides controls its availability and mobility in natural waters and soils, and these minerals are often suggested for the removal of PMG from wastewaters. However, a solid mechanistic and quantitative description of the adsorption behavior and surface speciation on these surfaces is still lacking, while it is essential for understanding PMG behavior in aquatic and terrestrial systems. This study gives new insights through advanced surface complexation modeling of new and previously published adsorption data, supplemented with MO/DFT calculations of the geometry, thermochemistry and theoretical infrared (IR) spectra of the surface complexes.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Dalian Institute of Chemical Physics State Key Laboratory of Catalysis, Dalian National Laboratory For Clean Energy, Zhongshan Road 457, 116023, Dalian, CHINA.
The addition of a redox mediator as soluble catalyst into electrolyte can effectively overcome the bottlenecks of poor energy efficiency and limited cyclability for Li-O2 batteries caused by passivation of insulating discharge products and unfavorable byproducts. Herein we report a novel soluble catalyst of bifunctional imidazolyl iodide salt additive, 1,3-dimethylimidazole iodide (DMII), to successfully construct highly efficient and durable Li-O2 batteries. The anion I- can effectively promote the charge transport of Li2O2 and accelerate the redox kinetics of oxygen reduction/oxygen evolution reactions on the cathode side, thereby significantly decreasing the charge/discharge overpotential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!