Dissociating murine skin into a single cell suspension is essential for downstream cellular analysis such as the characterization of infiltrating immune cells in rodent models of skin inflammation. Here, we describe a protocol for the digestion of mouse skin in a nutrient-rich solution with collagenase D, followed by separation of hematopoietic cells using a discontinuous density gradient. Cells thus obtained can be used for in vitro studies, in vivo transfer, and other downstream cellular and molecular analyses including flow cytometry. This protocol is an effective and economical alternative to expensive mechanical dissociators, specialized separation columns, and harsher trypsin- and dispase-based digestion methods, which may compromise cellular viability or density of surface proteins relevant for phenotypic characterization or cellular function. As shown here in our representative data, this protocol produced highly viable cells, contained specific immune cell subsets, and had no effect on integrity of common surface marker proteins used in flow cytometric analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4781699 | PMC |
http://dx.doi.org/10.3791/53638 | DOI Listing |
Biomed Microdevices
January 2025
Institute of Industrial Science, The University of Tokyo, Meguro-Ku, 153-8505, Tokyo, Japan.
Recently, photodynamic therapy (PDT) which involves a photosensitizer (PS), a special drug activated by light, and light irradiation has been widely used in treating various skin diseases such as port-wine stain as well as cancers such as melanoma and non-melanoma skin cancers. PDT comprises two general steps: the introduction of PS into the body or a specific spot to be treated, and the irradiation process using a light source with a specific wavelength to excite the PS. Although PDT is gaining great attention owing to its potential as a targeted approach in the treatment of skin cancers, several limitations still exist for practical use.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia.
Atopic dermatitis (AD) is a chronic inflammatory skin condition characterized by dry skin, severe itching, redness, and inflammation. Its complex etiology, involving genetic, immunological, and environmental factors, necessitates innovative therapeutic approaches. This study investigates nanostructured lipid carriers (NLCs) formulated with traditional fermented coconut (Cocos nucifera L.
View Article and Find Full Text PDFAging (Albany NY)
January 2025
Department of Pathology, Yale University School of Medicine, New Haven, CT 06519, USA.
Studies of the aging transcriptome focus on genes that change with age. But what can we learn from age-invariant genes-those that remain unchanged throughout the aging process? These genes also have a practical application: they can serve as reference genes in expression studies. Reference genes have mostly been identified and validated in young organisms, and no systematic investigation has been done across the lifespan.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA.
Unlabelled: is an acid-fast, aerobic, non-motile, and biofilm-forming bacterium. The increasing prevalence of mycobacterial infections makes it necessary to find new methods to combat the resistance of bacteria to conventional antibiotics. is an emerging pathogen that is intrinsically drug resistant due to several factors, including an impermeable cell envelope, drug efflux pumps, target-modifying enzymes, and the ability to form thick, robust biofilms.
View Article and Find Full Text PDFExpert Rev Vaccines
January 2025
Hospital Universitario La Paz-IdiPAZ, Madrid, Spain.
Introduction: Vaccines to prevent important infections involving, e.g. influenza viruses, severe acute respiratory syndrome-causing coronaviruses (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!