Type 2 diabetes is a complex disease. It results from a failure of the body to maintain energy homoeostasis. Multicellular organisms have evolved complex strategies to preserve a relatively stable internal nutrient environment, despite fluctuations in external nutrient availability. This complex strategy involves the co-ordinated responses of multiple organs to promote storage or mobilization of energy sources according to the availability of nutrients and cellular bioenergetics needs. The endocrine pancreas plays a central role in these processes by secreting insulin and glucagon. When this co-ordinated effort fails, hyperglycaemia and hyperlipidaemia develops, characterizing a state of metabolic imbalance and ultimately overt diabetes. Although diabetes is most likely a collection of diseases, scientists are starting to identify genetic components and environmental triggers. Genome-wide association studies revealed that by and large, gene variants associated with type 2 diabetes are implicated in pancreatic β-cell function, suggesting that the β-cell may be the weakest link in the chain of events that results in diabetes. Thus, it is critical to understand how environmental cues affect the β-cell. Phosphoinositides are important 'decoders' of environmental cues. As such, these lipids have been implicated in cellular responses to a wide range of growth factors, hormones, stress agents, nutrients and metabolites. Here we will review some of the well-established and potential new roles for phosphoinositides in β-cell function/dysfunction and discuss how our knowledge of phosphoinositide signalling could aid in the identification of potential strategies for treating or preventing type 2 diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10760496 | PMC |
http://dx.doi.org/10.1042/BST20150229 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!