Netter: re-ranking gene network inference predictions using structural network properties.

BMC Bioinformatics

Data Mining and Modelling for Biomedicine group, VIB Inflammation Research Center, Ghent, Belgium.

Published: February 2016

Background: Many algorithms have been developed to infer the topology of gene regulatory networks from gene expression data. These methods typically produce a ranking of links between genes with associated confidence scores, after which a certain threshold is chosen to produce the inferred topology. However, the structural properties of the predicted network do not resemble those typical for a gene regulatory network, as most algorithms only take into account connections found in the data and do not include known graph properties in their inference process. This lowers the prediction accuracy of these methods, limiting their usability in practice.

Results: We propose a post-processing algorithm which is applicable to any confidence ranking of regulatory interactions obtained from a network inference method which can use, inter alia, graphlets and several graph-invariant properties to re-rank the links into a more accurate prediction. To demonstrate the potential of our approach, we re-rank predictions of six different state-of-the-art algorithms using three simple network properties as optimization criteria and show that Netter can improve the predictions made on both artificially generated data as well as the DREAM4 and DREAM5 benchmarks. Additionally, the DREAM5 E.coli. community prediction inferred from real expression data is further improved. Furthermore, Netter compares favorably to other post-processing algorithms and is not restricted to correlation-like predictions. Lastly, we demonstrate that the performance increase is robust for a wide range of parameter settings. Netter is available at http://bioinformatics.intec.ugent.be.

Conclusions: Network inference from high-throughput data is a long-standing challenge. In this work, we present Netter, which can further refine network predictions based on a set of user-defined graph properties. Netter is a flexible system which can be applied in unison with any method producing a ranking from omics data. It can be tailored to specific prior knowledge by expert users but can also be applied in general uses cases. Concluding, we believe that Netter is an interesting second step in the network inference process to further increase the quality of prediction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4746913PMC
http://dx.doi.org/10.1186/s12859-016-0913-0DOI Listing

Publication Analysis

Top Keywords

network inference
16
network
9
network properties
8
gene regulatory
8
expression data
8
graph properties
8
inference process
8
netter
7
properties
6
data
6

Similar Publications

Evaluating simulated teaching audio for teacher trainees using RAG and local LLMs.

Sci Rep

January 2025

Office for the Advancement of Educational Information, Chengdu Normal University, Chengdu, 610000, China.

In the training of teacher students, simulated teaching is a key method for enhancing teaching skills. However, traditional evaluations of simulated teaching typically rely on direct teacher involvement and guidance, increasing teachers' workload and limiting the opportunities for teacher students to practice independently. This paper introduces a Retrieval-Augmented Generation (RAG) framework constructed using various open-source tools (such as FastChat for model inference and Whisper for speech-to-text) combined with a local large language model (LLM) for audio analysis of simulated teaching.

View Article and Find Full Text PDF

Exploring imitation of within hand prehensile object manipulation using fMRI and graph theory analysis.

Sci Rep

January 2025

Support Centre for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.

This study aims to establish an imitation task of multi-finger haptics in the context of regular grasping and regrasping processes during activities of daily living. A video guided the 26 healthy, right-handed volunteers through the three phases of the task: (1) fixation of a hand holding a cuboid, (2) observation of the sensori-motor manipulation, (3) imitation of that motor action. fMRI recorded the task; graph analysis of the acquisitions revealed the associated functional cerebral connectivity patterns.

View Article and Find Full Text PDF

Super-resolution (SR) neural networks transform low-resolution optical microscopy images into SR images. Application of single-image SR (SISR) methods to long-term imaging has not exploited the temporal dependencies between neighboring frames and has been subject to inference uncertainty that is difficult to quantify. Here, by building a large-scale fluorescence microscopy dataset and evaluating the propagation and alignment components of neural network models, we devise a deformable phase-space alignment (DPA) time-lapse image SR (TISR) neural network.

View Article and Find Full Text PDF

Attention mechanisms such as the Convolutional Block Attention Module (CBAM) can help emphasize and refine the most relevant feature maps such as color, texture, spots, and wrinkle variations for the avocado ripeness classification. However, the CBAM lacks global context awareness, which may prevent it from capturing long-range dependencies or global patterns such as relationships between distant regions in the image. Further, more complex neural networks can improve model performance but at the cost of increasing the number of layers and train parameters, which may not be suitable for resource constrained devices.

View Article and Find Full Text PDF

A guidance to intelligent metamaterials and metamaterials intelligence.

Nat Commun

January 2025

ZJU-UIUC Institute, Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou, China.

The bidirectional interactions between metamaterials and artificial intelligence have recently attracted immense interest to motivate scientists to revisit respective communities, giving rise to the proliferation of intelligent metamaterials and metamaterials intelligence. Owning to the strong nonlinear fitting and generalization ability, artificial intelligence is poised to serve as a materials-savvy surrogate electromagnetic simulator and a high-speed computing nucleus that drives numerous self-driving metamaterial applications, such as invisibility cloak, imaging, detection, and wireless communication. In turn, metamaterials create a versatile electromagnetic manipulator for wave-based analogue computing to be complementary with conventional electronic computing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!