Modeling community dynamics of aquatic invertebrates is an important but challenging task, in particular in ecotoxicological risk assessment. Systematic parameter estimation and rigorous assessment of model uncertainty are often lacking in such applications. We applied the mechanistic food web model Streambugs to investigate the temporal development of the macroinvertebrate community in an ecotoxicological mesocosm experiment with pulsed contaminations with the insecticide thiacloprid. We used Bayesian inference to estimate parameters and their uncertainty. Approx. 85% of all experimental observations lie within the 90% uncertainty intervals indicating reasonably good fits of the calibrated model. However, a validation with independent data was not possible due to lacking data. Investigation of vital rates and limiting factors in the model yielded insights into recovery dynamics. Inclusion of the emergence process and sub-lethal effects turned out to be potentially relevant model extensions. Measurements of food source dynamics, individual body size (classes), and additional knowledge on sub-lethal effects would support more accurate modeling. This application of a process-based, ecotoxicological community model with uncertainty assessment by Bayesian inference increased our process understanding of toxicant effects in macroinvertebrate communities and helped identifying potential improvements in model structure and experimental design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.5b04068 | DOI Listing |
Insects
January 2025
Program in Ecology and Environmental Science and Large River Studies Center, Department of Biology, Winona State University, Winona, MN 55987, USA.
Prior to implementing watershed-wide projects to reduce the impacts of agriculture on regional streams and rivers, stream habitats and benthic aquatic macroinvertebrate communities were assessed at 15 sites on the South Branch Root River and its major tributaries in southeastern Minnesota, USA. Triplicate kick-net samples were collected from each site during three time periods (1998, 1999, 2006/2008) and stream habitats were inventoried within 150 m long sections at each site. In total, 26,760 invertebrates representing 84 taxa were collected and used to rate stream sites using a regional multi-metric benthic index of biotic integrity (BIBI).
View Article and Find Full Text PDFEcology
January 2025
Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
Temperate streams are subsidized by inputs of leaf litter peaking in fall. Yet, stream communities decompose dead leaves and integrate their energy into the aquatic food web throughout the whole year. Most studies investigating stream decomposition largely overlook long-term trajectories, which must be understood for an appropriate temporal upscaling of ecosystem processes.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
University Paris-Saclay, INRAE, HYCAR, 1 Rue Pierre-Gilles de Gennes, 10030, 92761, Antony Cedex, CS, France.
Constructed wetlands (CWs), originally designed to mitigate chemical water pollution, often host noticeable aquatic fauna. However, little is known about the impact of the contaminants circulating within CWs on this local fauna, questioning the role of CWs as ecological refuges or traps. We aimed to assess the potential of an agricultural CWs in northern France to act as an ecological trap for aquatic fauna and the potential consequences on wetland functioning.
View Article and Find Full Text PDFEcol Appl
January 2025
U.S. Geological Survey, Lower Mississippi-Gulf Water Science Center, Jackson, Mississippi, USA.
Subsidy-stress gradients offer a useful framework for understanding ecological responses to perturbation and may help inform ecological metrics in highly modified systems. Historic, region-wide shifts from bottomland hardwood forest to row crop agriculture can cause positively skewed impact gradients in alluvial plain ecoregions, resulting in tolerant organisms that typically exhibit a subsidy response (increased abundance in response to environmental stressors) shifting to a stress response (declining abundance at higher concentrations). As a result, observed biological tolerance in modified ecosystems may differ from less modified regions, creating significant challenges for detecting biological responses to restoration efforts.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Ecology and Environmental Protection, University of Rzeszów, Poland.
Mountain environments, as biodiversity hotspots, are subject to numerous anthropological pressures. In mountain areas, a common threat to stream biocenoses is the timber industry. Timber industry increases the fine sediment input into the mountain rivers; furthermore, timber transport requires the construction of low-water crossings across streams.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!