Our innate immune system recognizes a foreign RNA sequence of a pathogen and activates the immune system to eliminate the pathogen from our body. This immunomodulatory potential of RNA can be used to design RNA-based immunotherapy and vaccine adjuvants. In case of siRNA-based therapy, the immunomodulatory effect of an RNA sequence is unwanted as it may cause immunotoxicity. Thus, we developed a method for designing a single-stranded RNA (ssRNA) sequence with desired immunomodulatory potentials, for designing RNA-based therapeutics, immunotherapy and vaccine adjuvants. The dataset used for training and testing our models consists of 602 experimentally verified immunomodulatory oligoribonucleotides (IMORNs) that are ssRNA sequences of length 17 to 27 nucleotides and 520 circulating miRNAs as non-immunomodulatory sequences. We developed prediction models using various features that include composition-based features, binary profile, selected features, and hybrid features. All models were evaluated using five-fold cross-validation and external validation techniques; achieving a maximum mean Matthews Correlation Coefficient (MCC) of 0.86 with 93% accuracy. We identified motifs using MERCI software and observed the abundance of adenine (A) in motifs. Based on the above study, we developed a web server, imRNA, comprising of various modules important for designing RNA-based therapeutics (http://crdd.osdd.net/raghava/imrna/).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4748260 | PMC |
http://dx.doi.org/10.1038/srep20678 | DOI Listing |
Adv Sci (Weinh)
January 2025
Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, P. R. China.
MicroRNAs (miRNAs) are associated with amyloid-β (Aβ) dysmetabolism, a pivotal factor in the pathogenesis of Alzheimer's disease (AD). This study unveiled a novel miRNA, microRNA-32533 (miR-32533), featuring a distinctive base sequence identified through RNA sequencing of the APPswe/PSEN1dE9 (APP/PS1) mouse brain. Its role and underlying mechanisms were subsequently explored.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.
Human rhinovirus C (HRV-C) is a significant contributor to respiratory tract infections in children and is implicated in asthma exacerbations across all age groups. Despite its impact, there is currently no licensed vaccine available for HRV-C. Here, we present a novel approach to address this gap by employing immunoinformatics techniques for the design of a multi-epitope-based vaccine against HRV-C.
View Article and Find Full Text PDFFront Immunol
January 2025
The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
Background: Cervical cancer is the fourth most common cancer in women globally, and the main cause of the disease has been found to be ongoing HPV infection. Cervical cancer remains the primary cause of cancer-related death despite major improvements in screening and treatment approaches, especially in low- and middle-income nations. Therefore, it is crucial to investigate the tumor microenvironment in advanced cervical cancer in order to identify possible treatment targets.
View Article and Find Full Text PDFMicroPubl Biol
January 2025
Biology Department, California State University, Northridge, Northridge, California, United States.
RNA toehold switches are powerful tools that can be used as biosensors to detect nearly any RNA sequence. In the presence of a specific RNA trigger, the toehold switch allows translation of a reporter protein. Toehold switches expressed in cell-free expression systems have been used as biosensors for several viruses and bacterial RNAs.
View Article and Find Full Text PDFVirus Evol
December 2024
Department of Epidemiology and Population Health, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, United States.
Despite the increasing burden of dengue in Kenya and Africa, the introduction and expansion of the virus in the region remain poorly understood. The objective of this study is to examine the genetic diversity and evolutionary histories of dengue virus (DENV) serotypes 1 and 3 in Kenya and contextualize their circulation within circulation dynamics in the broader African region. Viral RNA was extracted from samples collected from a cohort of febrile patients recruited at clinical sites in Kenya from 2013 to 2022.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!