Biosynthesis pathways of pyrimidine and purine are shown to play an important role in regular cellular activities. The biosynthesis can occur either through de novo or salvage pathways based on the requirement of the cell. The pyrimidine biosynthesis pathway has been linked to several disorders and various autoimmune diseases. Orotate phosphoribosyl transferase (OPRTase) is an important enzyme which catalyzes the conversion of orotate to orotate monophosphate in the fifth step of pyrimidine biosynthesis. Phylogenetic analysis of 228 OPRTase sequences shows the distribution of proteins across different living forms of life. High structural similarities between Thermusthermophilus and other organisms kindled us to concentrate on OPRTase as an anti-pathogenic target. In this study, a homology model of OPRTase was constructed using 2P1Z as a template. About 100 ns molecular dynamics simulation was performed to investigate the conformational stability and dynamic patterns of the protein. The amino acid residues (Met1, Asp2, Glu43, Ala44, Glu47, Lys51, Ala157 and Leu158) lining in the binding site were predicted using SiteMap. Further, structure based virtual screening was performed on the predicted binding site using ChemBridge, Asinex, Binding, NCI, TosLab and Zinc databases. Compounds retrieved from the screening collections were manually clustered. The resultant protein-ligand complexes were subjected to molecular dynamics simulations, which further validates the binding modes of the hits. The study may provide better insight for designing potent anti-pathogenic agent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2016.02.006 | DOI Listing |
Invasive Lobular Carcinoma (ILC), a distinct subtype of breast cancer is hallmarked by E-Cadherin loss, slow proliferation, and strong hormone receptor positivity. ILC faces significant challenges in clinical management due to advanced stage at diagnosis, late recurrence, and development of resistance to endocrine therapy - a cornerstone of ILC treatment. To elucidate the mechanisms underlying endocrine resistance in ILC, ILC cell lines (MDA-MB-134-VI, SUM44PE) were generated to be resistant to tamoxifen, a selective estrogen receptor modulator.
View Article and Find Full Text PDFPAX3-FOXO1, an oncogenic transcription factor, drives a particularly aggressive subtype of rhabdomyosarcoma (RMS) by enforcing gene expression programs that support malignant cell states. Here we show that PAX3-FOXO1 RMS cells exhibit altered pyrimidine metabolism and increased dependence on enzymes involved in pyrimidine synthesis, including dihydrofolate reductase (DHFR). Consequently, PAX3-FOXO1 cells display increased sensitivity to inhibition of DHFR by the chemotherapeutic drug methotrexate, and this dependence is rescued by provision of pyrimidine nucleotides.
View Article and Find Full Text PDFFront Immunol
January 2025
Traditional Chinese Medicine Department of Orthopaedic and Traumatic, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
Colorectal cancer (CRC) is one of the most prevalent malignant tumors in the world, and its occurrence and development are closely related to the complex immune regulatory mechanisms. As the first barrier of the body's defense, innate immunity plays a key role in tumor immune surveillance and anti-tumor response, in which type I/III interferon (IFN) is an important mediator with significant antiviral and anti-tumor functions. 5-methylcytosine (m5C) modification of RNA is a key epigenetic regulation that promotes the expression of CRC oncogenes and immune-related genes.
View Article and Find Full Text PDFOncogene
January 2025
Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Overexpression of uridine-cytidine kinase 2 (UCK2), a key enzyme in the pyrimidine salvage pathway, is implicated in human cancer development, while its regulation under nutrient stress remains to be investigated. Here, we show that under glucose limitation, AMPK phosphorylates glycinamide ribonucleotide formyltransferase (GART) at Ser440, and this modification facilitates its interaction with UCK2. Through its binding to UCK2, GART generates tetrahydrofolate (THF) and thus inhibits the activity of integrin-linked kinase associated phosphatase (ILKAP) for removing AKT1-mediated UCK2-Ser254 phosphorylation under glucose limitation, in which dephosphorylation of UCK2-Ser254 tends to cause Trim21-mediated UCK2 polyubiquitination and degradation.
View Article and Find Full Text PDFTransl Psychiatry
January 2025
Department of Neuropsychiatry, Dongguk University, School of Medicine, Seoul, Republic of Korea.
Autism spectrum disorder (ASD) is linked to ion channel dysfunction, including chloride voltage-gated channel-4 (CLCN4). We generated Clcn4 knockout (KO) mice by deleting exon 5 of chromosome 7 in the C57BL/6 mice. Clcn4 KO exhibited reduced social interaction and increased repetitive behaviors assessed using three-chamber and marble burying tests.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!