Discovery of unique and ENM- specific pathophysiologic pathways: Comparison of the translocation of inhaled iridium nanoparticles from nasal epithelium versus alveolar epithelium towards the brain of rats.

Toxicol Appl Pharmacol

Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Epidemiology 2, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Munich, Germany. Electronic address:

Published: May 2016

The biokinetics of inhaled nanoparticles (NP) is more complex than that of larger particles since NP may NP deposited on the nasal mucosa of the upper respiratory tract (URT) may translocate to the olfactory bulb of the brain and also via the trigeminus (URT neuronal route); and (b) NP deposited in the lower respiratory tract (LRT) may cross the ABB into blood and enter the brain across the blood-brain-barrier (BBB) or take a neuronal route from enervated tracheo-bronchial epithelia via the vagus nerve. Translocation from both - the URT and the LRT - are quantified during the first 24h after a 1-hour aerosol inhalation of 20nm-sized, (192)Ir radiolabeled iridium NP by healthy adult rats using differential exposures: (I) nose-only exposure of the entire respiratory tract or (II) intratracheal (IT) inhalation of intubated and ventilated rats, thereby bypassing the URT and extrathoracic nasal passages. After nose-only exposure brain accumulation (BrAcc) is significantly nine-fold higher than after IT inhalation since the former results from both pathways (a+b) while the latter exposure comes only from pathway (b). Interestingly, there are significantly more circulating NP in blood 24h after nose-only inhalation than after IT inhalation. Distinguishing translocation from URT versus LRT estimated from the differential inhalation exposures, the former is significantly higher (8-fold) than from the LRT. Although the BrAcc fraction is rather low compared to total NP deposition after this short-term exposure, this study proofs that inhaled insoluble NP can accumulate in the brain from both - URT and LRT which may trigger and/or modulate adverse health effects in the central nervous system (CNS) during chronic exposure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4811717PMC
http://dx.doi.org/10.1016/j.taap.2016.02.004DOI Listing

Publication Analysis

Top Keywords

respiratory tract
12
neuronal route
8
translocation urt
8
urt lrt
8
nose-only exposure
8
urt
6
inhalation
6
brain
5
lrt
5
exposure
5

Similar Publications

Treatment patterns for chronic obstructive pulmonary disease under the tiered medical system.

Sci Rep

January 2025

Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China.

China has implemented the "tiered medical services" policy since 2015, while there is a paucity of data evaluating the the current status of chronic obstructive pulmonary disease (COPD) management under the system. Characteristics and treatments from 11,905 COPD patients in 88 hospitals across different tiers in China were included and analyzed. We assessed the statistical significance of differences by one way analysis of variance (ANOVA) for continuous variables and with the chi-squared test for categorical variables.

View Article and Find Full Text PDF

The respiratory tract hosts a diverse microbial community whose composition varies with anatomical location and throughout life. Rothia mucilaginosa, a common commensal of the upper respiratory tract and oral cavity, has recently been recognized for its ability to inhibit bacteria-triggered pro-inflammatory responses. However, its role in modulating the immune response to viral infections such as influenza A virus (IAV) pneumonia, remains unknown.

View Article and Find Full Text PDF

Toxicological effects of long-term continuous exposure to ambient air on human bronchial epithelial Calu-3 cells exposed at the air-liquid interface.

Environ Res

January 2025

Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Munich, 85764, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, 18051, Germany.

Air pollution significantly contributes to the global burden of respiratory and cardiovascular diseases. While single source/compound studies dominate current research, long-term, multi-pollutant studies are crucial to understanding the health impacts of environmental aerosols. Our study aimed to use the first air-liquid interface (ALI) aerosol exposure system adapted for long-term in vitro exposures for ambient air in vitro exposure.

View Article and Find Full Text PDF

Objective: This study was to explore the factors associated with prolonged hospital length of stay (LOS) in patients with intracranial aneurysms (IAs) undergoing endovascular interventional embolization and construct prediction model machine learning algorithms.

Methods: Employing a retrospective cohort study design, this study collected patients with ruptured IA who received endovascular treatment at Jingzhou First People's Hospital during the inclusion period from September 2022 to December 2023. The entire dataset was randomly split into training and testing dataset with a 7:3 ratio.

View Article and Find Full Text PDF

Background: Respiratory motion during radiotherapy (RT) may reduce the therapeutic effect and increase the dose received by organs at risk. This can be addressed by real-time tracking, where respiration motion prediction is currently required to compensate for system latency in RT systems. Notably, for the prediction of future images in image-guided adaptive RT systems, the use of deep learning has been considered.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!