AI Article Synopsis

Article Abstract

In this paper, we study the sensitivities of electron dose calculations with respect to stopping power and transport coefficients. We focus on the application to radiotherapy simulations. We use a Fokker-Planck approximation to the Boltzmann transport equation. Equations for the sensitivities are derived by the adjoint method. The Fokker-Planck equation and its adjoint are solved numerically in slab geometry using the spherical harmonics expansion ($P_N$) and an Harten-Lax-van Leer finite volume method. Our method is verified by comparison to finite difference approximations of the sensitivities. Finally, we present numerical results of the sensitivities for the normalized average dose deposition depth with respect to the stopping power and the transport coefficients, demonstrating the increase in relative sensitivities as beam energy decreases. This in turn gives estimates on the uncertainty in the normalized average deposition depth, which we present.

Download full-text PDF

Source
http://dx.doi.org/10.1093/imammb/dqv039DOI Listing

Publication Analysis

Top Keywords

dose deposition
8
respect stopping
8
stopping power
8
power transport
8
transport coefficients
8
normalized average
8
deposition depth
8
sensitivities
5
sensitivity analysis
4
analysis dose
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!