Retrogradation enthalpy does not always reflect the retrogradation behavior of gelatinized starch.

Sci Rep

Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China.

Published: February 2016

Starch retrogradation is a term used to define the process in which gelatinized starch undergoes a disorder-to-order transition. A thorough understanding of starch retrogradation behavior plays an important role in maintaining the quality of starchy foods during storage. By means of DSC, we have demonstrated for the first time that at low water contents, the enthalpy change of retrograded starch is higher than that of native starch. In terms of FTIR and Raman spectroscopic results, we showed that the molecular order of reheated retrograded starch samples is lower than that of DSC gelatinized starch. These findings have led us to conclude that enthalpy change of retrograded starch at low water contents involves the melting of recrystallized starch during storage and residual starch crystallites after DSC gelatinization, and that the endothermic transition of retrograded starch gels at low water contents does not fully represent the retrogradation behavior of starch. Very low or high water contents do not favor the occurrence of starch retrogradation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4748231PMC
http://dx.doi.org/10.1038/srep20965DOI Listing

Publication Analysis

Top Keywords

water contents
16
retrograded starch
16
starch
14
retrogradation behavior
12
gelatinized starch
12
starch retrogradation
12
low water
12
enthalpy change
8
change retrograded
8
starch low
8

Similar Publications

Study on the effect of water content on physical properties of bentonite.

PLoS One

January 2025

Lecturer College of Civil and Traffic Engineering, Henan University of Urban Construction, Ping Dingshan, China.

Moisture content profoundly influences the engineering properties of expansive soil, a critical consideration in various geotechnical applications. This study delves into the intricate relationship between water content and the physical properties of bentonite, a key constituent of expansive soil. Through a comprehensive analysis encompassing fundamental physical properties, rheological characteristics, permeability behavior, and microscopic features, we elucidate the complex interplay between water content and bentonite behavior.

View Article and Find Full Text PDF

Mitigating matrix effects in oil and gas wastewater analysis: LC-MS/MS method for ethanolamines.

Environ Sci Process Impacts

January 2025

Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, USA.

The high salinity and organic content in oil and gas wastewaters can cause ion suppression during liquid chromatography mass spectrometry (LC/MS) analysis, diminishing the sensitivity and accuracy of measurements in available methods. This suppression is severe for low molecular weight organic compounds such as ethanolamines (, monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), -methyldiethanolamine (MDEA), and ,-ethyldiethanolamine (EDEA)). Here, we deployed solid phase extraction (SPE), mixed-mode LC, triple quadrupole MS with positive electrospray ionization (ESI), and a suite of stable isotope standards (, one per target compound) to correct for ion suppression by salts and organic matter, SPE losses, and instrument variability.

View Article and Find Full Text PDF

Biochar for ameliorating soil fertility and microbial diversity: From production to action of the black gold.

iScience

January 2025

Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India.

This article evaluated different production strategies, characteristics, and applications of biochar for ameliorating soil fertility and microbial diversity. The biochar production techniques are evolving, indicating that newer methods (including hydrothermal and retort carbonization) operate with minimum temperatures, yet resulting in high yields with significant improvements in different properties, including heating value, oxygen functionality, and carbon content, compared to the traditional methods. It has been found that the temperature, feedstock type, and moisture content play critical roles in the fabrication process.

View Article and Find Full Text PDF

Background: Salinity stress is a significant challenge in agriculture, particularly in regions where soil salinity is increasing due to factors such as irrigation practices and climate change. This stress adversely affects plant growth, development, and yield, posing a threat to the cultivation of economically important plants like . This study aims to evaluate the effectiveness by proactively applying indole-3-butyric acid (IBA) to cuttings as a practical and efficient method for mitigating the adverse effects of salinity stress.

View Article and Find Full Text PDF

Optimizing gelation time for cell shape control through active learning.

Soft Matter

January 2025

Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06510, USA.

Hydrogels are popular platforms for cell encapsulation in biomedicine and tissue engineering due to their soft, porous structures, high water content, and excellent tunability. Recent studies highlight that the timing of network formation can be just as important as mechanical properties in influencing cell morphologies. Conventionally, time-dependent properties can be achieved through multi-step processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!