Using environment-friendly materials for sensing toxic metal ions has drawn significant attention in recent research. Herein, we present an aqueous synthesis of stable CdS quantum dots (QDs) using thiol-functionalized poly(vinyl alcohol) (PVA) as the unique capping ligand for the detection of trace Hg(2+) in environmental water samples. The CdS QDs with an average size of 3.3 nm had good water-solubility and favorable fluorescence with a quantum yield of 32.8% and a longer luminescence lifetime of 31.9 ns. The fluorescence intensity of QDs aqueous solution in the 520 nm wavelength was quenched upon the addition of Hg(2+). Under the optimal conditions, the ratio of the blank fluorescence intensity to the quenched fluorescence intensity was linearly proportional to the Hg(2+) concentration from 2 to 4000 nM with a detection limit of 1 nM. Also, many co-existing metal ions were not interfered with the detection of Hg(2+). This nanomaterial was successfully applied to the measurement of Hg(2+) in water samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2116/analsci.32.161 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!