Background: Single photon emission computed tomography (SPECT) is an indispensable tool in the determination of the in vivo fate of polymeric micelles. However, for this purpose, the micelles need to be radiolabeled, and almost all radiolabeling procedures published to date involve the conjugation of a chelating agent to the constituting polymer, which could actually affect their biodistribution. In this paper, we report a new facile method for radiolabeling polystyrene-b-poly(ethylene oxide) diblock copolymer micelles without the necessity of any chemical modification. Instead, we entrap the radiolabel (i.e., (111)In) in the micellar core during the formation of the micelles by using tropolone as lipophilic ligand.
Methods: Micelles were prepared by emulsifying a polymer solution in chloroform with a buffer containing (111)In and lipophilic ligand tropolone, by stirring for about 2 h. The produced micelles were physically characterized by means of dynamic light scattering and transmission electron microscopy. The biological properties of the radiolabeled micelles were determined by means of in vivo and ex vivo evaluation. SPECT analysis was done on Balb/c-nu mice, after administration of 1 mg micelles containing 22 MBq of (111)In. SPECT images were obtained over 24 h. Biodistribution of the micelles was assessed also ex vivo.
Results: The radiolabeling method is robust and reproducible with constant radiolabeling efficiency (~30 %) even at indium concentrations that are much higher than the necessary for in vivo studies, and the radiolabel retention is more than 80 % in mouse serum at 48 h. Radiolabeled micelles having hydrodynamic radius of 97 ± 13 nm have been successfully evaluated in vivo and ex vivo in non-tumor-bearing mice, revealing significant blood circulation up to at least 24 h post injection, with low accumulation in most organs except for the liver and spleen, which are the natural organs for clearance of nanoparticles.
Conclusions: An easy and robust radiolabeling method has been developed, and its applicability is demonstrated in animal studies, showing its value for future investigation of polymeric micelles as nanocarriers in tumor-bearing mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4747947 | PMC |
http://dx.doi.org/10.1186/s13550-016-0167-x | DOI Listing |
Discov Oncol
January 2025
Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.
Cancer, one of the deadliest diseases, has remained the epicenter of biological research for more than seven decades. Yet all the efforts for a perfect therapeutic cure come with certain limitations. The use of medicinal plants and their phytochemicals as therapeutics has received much attention in recent years.
View Article and Find Full Text PDFInt J Pharm X
June 2025
Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
Cancer remains one of the leading causes of death worldwide, highlighting the urgent need for novel antitumor drugs. Natural products have long been a crucial source of anticancer agents. Among these, emodin (EMO), a multifunctional anthraquinone compound, exhibits significant anticancer effects but is hindered in clinical applications by challenges such as low solubility, rapid metabolism, poor bioavailability, and off-target toxicity.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
For the first time asymmetric and symmetric carboxytriazoleimidazolium derivatives with different structures were synthesized. The critical micellization concentration (CMC) value was estimated using a pyrene fluorescent probe and the solubility of Orange OT. The complexation ability of carboxytriazoleimidazolium derivatives toward bovine serum albumin (BSA) has been investigated by various physico-chemical methods: fluorescence spectroscopy, electrophoretic light scattering and circular dichroism.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Petroleum Engineering, School of Mining and Geosciences, Nazarbayev University, Astana, Kazakhstan.
Geothermal energy, oil industry, and underground gas storage technology require deep drilling. Although oil-based drilling fluids have been widely used, they cause environmental issues. Environmentally friendly Aphronic fluid has emerged as an alternative to oil-based drilling fluid.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg 79104, Germany.
The selective insertion of membrane-impermeant amphiphiles such as detergents, (lipo)peptides, drugs, etc. into the leaflet of a membrane causes an imbalance between the intrinsic areas of the and leaflet, referred to as asymmetry stress or differential stress. The literature provides individual mechanisms of how membranes respond to such stress, which are relevant to membrane remodeling processes and leakage phenomena.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!