Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Anterior cruciate ligament reconstructions (ACLRs) in skeletally immature patients are increasing. The purpose of this study is to describe the demographics, graft usage, revision, and re-operation rates in skeletally immature ACLRs in the Kaiser Permanente healthcare system.
Methods: Skeletally immature patients (<17.0 years old with open physes) were identified using the Kaiser Permanente ACLR registry. Multi-ligament reconstructions and physeal-sparing ACLRs were excluded. Aseptic revision and same-knee re-operation were the outcomes of interest. Exposure of interest was graft type; bone-patellar-tendon-bone (BPTB) autograft, hamstring autograft, and any type of allograft. Age, gender, body mass index (BMI), and race were evaluated as confounders. Cox proportional hazard models stratified by surgeon were used to analyse the risk of revision and re-operation.
Results: A total of 534 primary ACLR cases were evaluated with a mean follow-up of 2.9 years. The majority were hamstring autografts (n = 388, 72.7%), male (n = 339, 63.9%), and White (n = 232, 43.4%). Median age was 14.9 years, and median BMI was 21.9 kg/m(2). There were 44 (8.2%) aseptic revisions and 48 (9.0%) same-knee re-operations. The incidence rate for revision was BPTB autograft 5.5%, hamstring autograft 7.5%, and allograft 13.2%. After adjusting for confounders and surgeon clustering effect, the risk of aseptic revision and revision between allograft and hamstring autograft did not reach statistical significance.
Conclusion: Graft selection differs in skeletally immature patients with a preponderance of surgeries being performed with hamstring tendon autografts. High revision rates were identified for all graft types used, though differences in revision rates across different graft types did not reach statistical significance. Surgeons should be aware of high rates of revision in this skeletally immature young population, although type of graft used did not appear to make a difference.
Level Of Evidence: III.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00167-016-4020-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!