AI Article Synopsis

  • The study aimed to assess how transplanted induced pluripotent stem cells (iPSCs) affect functional recovery and protein regulation in a rat model of Huntington's disease (HD).
  • After 8 weeks of iPSC transplantation, the rats showed improved motor function and increased glucose metabolism in the affected brain region, confirmed by PET/CT scans.
  • Additionally, the transplanted cells migrated to the damaged area and differentiated into relevant neurons, while specific proteins were significantly upregulated, suggesting a positive biochemical response to the treatment.

Article Abstract

Aims: The purpose of this study was to determine the functional recovery and protein regulation by transplanted induced pluripotent stem cells in a rat model of Huntington's disease (HD).

Methods: In a quinolinic acid-induced rat model of striatal degeneration, induced pluripotent stem cells were transplanted into the ipsilateral lateral ventricle 10 days after the quinolinic acid injection. At 8 weeks after transplantation, fluorodeoxyglucose-PET/CT scan and balance-beam test were performed to evaluate the functional recovery of experimental rats. In addition, immunofluorescence and protein array analysis were used to investigate the regulation of stimulated protein expression in the striatum.

Results: At 8 weeks after induced pluripotent stem cell transplantation, motor function was improved in comparison with the quinolinic acid-treated rats. High fluorodeoxyglucose accumulation in the injured striatum was also observed by PET/CT scans. In addition, immunofluorescence analysis demonstrated that implanted cells migrated from the lateral ventricle into the lesioned striatum and differentiated into striatal projection neurons. Array analysis showed a significant upregulation of GFR (Glial cell line-derived neurotrophic factor receptor) alpha-1, Adiponectin/Acrp30, basic-fibroblast growth factors, MIP-1 (Macrophage-inflammatory protein) alpha and leptin, as well as downregulation of cytokine-induced neutrophil chemoattractant-3 in striatum after transplantatation of induced pluripotent stem cells in comparison with the quinolinic acid -treated rats.

Conclusions: The findings in this work indicate that transplantation of induced pluripotent stem cells is a promising therapeutic candidate for HD.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nan.12315DOI Listing

Publication Analysis

Top Keywords

induced pluripotent
24
pluripotent stem
24
stem cells
20
protein regulation
8
functional recovery
8
rat model
8
lateral ventricle
8
quinolinic acid
8
addition immunofluorescence
8
array analysis
8

Similar Publications

A human induced pluripotent stem cell (iPSC) line was generated from patient with Kennedy Disease (KD), who carried the CAG repeat expansion mutation in AR gene. Peripheral blood mononuclear cells (PBMCs) were reprogrammed using non-integrating delivery of KFL4, OCT4, SOX2, BCL-XL and c-MYC. The iPSC line expresses pluripotency markers, displays a normal karyotype, and is capable of differentiate into three germ layers in vitro.

View Article and Find Full Text PDF

Background: Undifferentiated embryonic cell transcription factor 1 (UTF1) is predominantly expressed in pluripotent stem cells and plays a vital role in embryonic development and pluripotency maintenance. Despite its established importance in murine models, the role of UTF1 on human induced pluripotent stem cells (iPSCs) has not been comprehensively studied.

Methods: This study utilized CRISPR/Cas9 gene editing to create UTF1 knockout in human fibroblasts and iPSCs.

View Article and Find Full Text PDF

Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease caused by mutations in the SACS gene. The first two mutations were identified in French Canadian populations 20 years ago. The disease is now known as one of the most frequent recessive ataxias worldwide.

View Article and Find Full Text PDF

Non-canonical roles of CFH in retinal pigment epithelial cells revealed by dysfunctional rare CFH variants.

Stem Cell Reports

December 2024

Department of Cardio Metabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany. Electronic address:

Complement factor H (CFH) common genetic variants have been associated with age-related macular degeneration (AMD). While most previous in vitro RPE studies focused on the common p.His402Tyr CFH variant, we characterized rare CFH variants that are highly penetrant for AMD using induced pluripotent stem-cell-derived retinal pigment epithelium (iPSC-RPE).

View Article and Find Full Text PDF

Engineered hiPSC-derived vascular graft brings hope for thrombosis-free vascular therapy.

Cell Stem Cell

January 2025

Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA. Electronic address:

Tissue-engineered vascular conduits (TEVCs) are a promising blood vessel replacement. In a recent publication in Cell Stem Cell, Park et al. developed TEVCs comprised of decellularized human umbilical arteries lined with shear-trained, human induced pluripotent stem cell (hiPSC)-derived endothelial cells (ECs) that resisted thrombosis and exhibited patency upon grafting into the rat inferior vena cava (IVC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!