Detection of Dissolved Lactose Employing an Optofluidic Micro-System.

Diagnostics (Basel)

Institute for Microsensors, Actuators and Systems (IMSAS), Microsystems Center Bremen (MCB), University of Bremen, Otto-Hahn-Allee NW1, 28359 Bremen, Germany.

Published: December 2012

In this work, a novel optofluidic sensor principle is employed for a non-invasive and label-free characterization of lactose containing liquid samples. Especially for medicine and food industry, a simple, fast and accurate determination of the amount of lactose in various products is highly desirable. The presented system exploits the impact of dissolved molecules on the refractive index for sample characterization. On the optofluidic chip, a microfluidic channel filled with the analyte is hit by slightly diverging laser light. The center incident angle of the beam on-chip is set close to the critical angle for total internal reflection. Both the reflected and the transmitted light signals are recorded at the solid-liquid interface. The ratio of those two signals is then used as representative value for the analyte. Using this principle, lactose containing samples were differentiated based on their concentrations at a step size of 10 mmol/L. The use of the signals ratio instead of a single signal approach improves the stability of the system significantly, allowing for higher resolutions to be achieved. Furthermore, the fabrication of the devices in PDMS ensures biocompatibility and provides low absorbance of light in the visible range.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4665552PMC
http://dx.doi.org/10.3390/diagnostics2040097DOI Listing

Publication Analysis

Top Keywords

detection dissolved
4
lactose
4
dissolved lactose
4
lactose employing
4
employing optofluidic
4
optofluidic micro-system
4
micro-system work
4
work novel
4
novel optofluidic
4
optofluidic sensor
4

Similar Publications

Luminescence Lifetime-Based Water Conductivity Sensing Using a Cationic Dextran-Supported Ru(II) Polypyridyl Complex.

Sensors (Basel)

December 2024

Chemical Optosensors & Applied Photochemistry Group (GSOLFA), Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.

Water conductivity sensing relies universally on electrical measurements, which are subject to corrosion of the electrodes and subsequent signal drift in prolonged in situ uses. Furthermore, they cannot provide contactless sensing or remote readout. To this end, a novel device for water conductivity monitoring has been developed by employing a microenvironment-sensitive ruthenium complex, [Ru(2,2'-bipyridine-4,4'-disulfonato)], embedded into a quaternary ammonium functionalized cross-linked polymer support.

View Article and Find Full Text PDF

In this manuscript, the effects of two extracts from were tested: (a) an extract titrated to 49.7% of andrographolide and obtained from leaves of the plant: (b) the pure andrographolide titrated to 99%. The extracts were dissolved in 1-butanol and tested on tumor lines (MCF7 and SH-SY5Y) and the non-tumor line (Huvec) to understand the effects on cell proliferation.

View Article and Find Full Text PDF

Microfluidics provides cutting-edge technological advancements for the in-channel manipulation and analysis of dissolved macromolecular species. The intrinsic potential of microfluidic devices to control key characteristics of polymer macromolecules such as their size distribution requires unleashing its full capacity. This work proposes a combined approach to analyzing the microscale behavior of polymer solutions and modifying their properties.

View Article and Find Full Text PDF

Excess of trace elements (TE) significantly alters the performances of anaerobic digestors (AD). Due to interactions with organic matter in particular, only a small fraction of TE can effectively interact with the biomass. However, assessing the bioavailable fraction of TE remains an issue.

View Article and Find Full Text PDF

The speciation and mobility of arsenic (As) in waters are largely influenced by the colloids; however, the impacts of colloids with different molecular weights (MWs) in water fractions remain largely unknown. Herein, the surface water was fractionated into three colloidal fractions and truly dissolved fraction via cross-flow ultrafiltration. Total As (As(T)) presented mainly as As(V) and existed primarily in the truly dissolved fraction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!