In this issue of Developmental Cell, Waldron et al. (2016) identify an interaction between a master regulator of heart development, TBX5, and the NuRD complex and describe how mutations affecting the interaction may contribute to congenital heart disease. Furthermore, these interactions may have contributed to the evolution of cardiac septation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5542051 | PMC |
http://dx.doi.org/10.1016/j.devcel.2016.01.015 | DOI Listing |
Atrial fibrillation (AF) is the most common sustained arrhythmia, affecting 59 million individuals worldwide. Impairment of atrial cardiomyocyte (aCM) gene regulatory mechanisms predisposes to atrial fibrillation. The transcription factor TBX5 is essential for normal atrial rhythm, and its inactivation causes loss of aCM enhancer accessibility, looping, and transcriptional identity.
View Article and Find Full Text PDFGenes Dev
April 2022
Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
The nucleosome remodeling and deacetylase (NuRD) complex is one of the central chromatin remodeling complexes that mediates gene repression. NuRD is essential for numerous developmental events, including heart development. Clinical and genetic studies have provided direct evidence for the role of chromodomain helicase DNA-binding protein 4 (CHD4), the catalytic component of NuRD, in congenital heart disease (CHD), including atrial and ventricular septal defects.
View Article and Find Full Text PDFGenes Dev
September 2017
Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
Direct reprogramming of fibroblasts to cardiomyocytes represents a potential means of restoring cardiac function following myocardial injury. AKT1 in the presence of four cardiogenic transcription factors, GATA4, HAND2, MEF2C, and TBX5 (AGHMT), efficiently induces the cardiac gene program in mouse embryonic fibroblasts but not adult fibroblasts. To identify additional regulators of adult cardiac reprogramming, we performed an unbiased screen of transcription factors and cytokines for those that might enhance or suppress the cardiogenic activity of AGHMT in adult mouse fibroblasts.
View Article and Find Full Text PDFDev Cell
February 2016
University of North Carolina McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological & Genome Sciences, UNC-Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, UNC-Chapel Hill, Chapel Hill, NC 27599, USA. Electronic address:
Human mutations in the cardiac transcription factor gene TBX5 cause congenital heart disease (CHD), although the underlying mechanism is unknown. We report characterization of the endogenous TBX5 cardiac interactome and demonstrate that TBX5, long considered a transcriptional activator, interacts biochemically and genetically with the nucleosome remodeling and deacetylase (NuRD) repressor complex. Incompatible gene programs are repressed by TBX5 in the developing heart.
View Article and Find Full Text PDFDev Cell
February 2016
Skaggs School of Pharmacy and Pharmaceutical Sciences, Departments of Pharmacology and Medicine, University of California, San Diego, La Jolla, CA 92093, USA. Electronic address:
In this issue of Developmental Cell, Waldron et al. (2016) identify an interaction between a master regulator of heart development, TBX5, and the NuRD complex and describe how mutations affecting the interaction may contribute to congenital heart disease. Furthermore, these interactions may have contributed to the evolution of cardiac septation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!