Millimeter-scale epileptiform spike propagation patterns and their relationship to seizures.

J Neural Eng

Department of Electrical and Computer Engineering, United States Naval Academy, Annapolis, MD, USA.

Published: April 2016

AI Article Synopsis

  • Current epilepsy mapping often uses sparse electrode arrays, but new research highlights the importance of high-resolution electrodes to study seizure dynamics more effectively.
  • Researchers used flexible electrode arrays with 500 μm spacing on cats to examine how epileptiform activity propagates in real-time before and during seizures.
  • Findings suggest that high-resolution recordings reveal distinct seizure patterns that standard methods miss, providing valuable insights into seizure networks.

Article Abstract

Objective: Current mapping of epileptic networks in patients prior to epilepsy surgery utilizes electrode arrays with sparse spatial sampling (∼1.0 cm inter-electrode spacing). Recent research demonstrates that sub-millimeter, cortical-column-scale domains have a role in seizure generation that may be clinically significant. We use high-resolution, active, flexible surface electrode arrays with 500 μm inter-electrode spacing to explore epileptiform local field potential (LFP) spike propagation patterns in two dimensions recorded from subdural micro-electrocorticographic signals in vivo in cat. In this study, we aimed to develop methods to quantitatively characterize the spatiotemporal dynamics of epileptiform activity at high-resolution.

Approach: We topically administered a GABA-antagonist, picrotoxin, to induce acute neocortical epileptiform activity leading up to discrete electrographic seizures. We extracted features from LFP spikes to characterize spatiotemporal patterns in these events. We then tested the hypothesis that two-dimensional spike patterns during seizures were different from those between seizures.

Main Results: We showed that spatially correlated events can be used to distinguish ictal versus interictal spikes.

Significance: We conclude that sub-millimeter-scale spatiotemporal spike patterns reveal network dynamics that are invisible to standard clinical recordings and contain information related to seizure-state.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4807853PMC
http://dx.doi.org/10.1088/1741-2560/13/2/026015DOI Listing

Publication Analysis

Top Keywords

spike propagation
8
propagation patterns
8
electrode arrays
8
inter-electrode spacing
8
characterize spatiotemporal
8
epileptiform activity
8
spike patterns
8
patterns
5
millimeter-scale epileptiform
4
spike
4

Similar Publications

Resistive memory-based zero-shot liquid state machine for multimodal event data learning.

Nat Comput Sci

January 2025

Key Lab of Fabrication Technologies for Integrated Circuits and Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, China.

The human brain is a complex spiking neural network (SNN) capable of learning multimodal signals in a zero-shot manner by generalizing existing knowledge. Remarkably, it maintains minimal power consumption through event-based signal propagation. However, replicating the human brain in neuromorphic hardware presents both hardware and software challenges.

View Article and Find Full Text PDF

Setting up a global SARS-CoV-2 surveillance system requires an understanding of how virus isolation and propagation practices, use of animal or human sera, and different neutralisation assay platforms influence assessment of SARS-CoV-2 antigenicity. In this study, with the contribution of 15 independent laboratories across all WHO regions, we carried out a controlled analysis of neutralisation assay platforms using the first WHO International Standard for antibodies to SARS-CoV-2 variants of concern (source: NIBSC). Live virus isolates (source: WHO BioHub or individual labs) or spike plasmids (individual labs) for pseudovirus production were used to perform neutralisation assays using the same serum panels.

View Article and Find Full Text PDF

Objective: Patients with drug-resistant epilepsy (DRE) are often referred for phase II evaluation with stereo-electroencephalography (SEEG) to identify a seizure onset zone for guiding definitive treatment. For patients without a focal seizure onset zone, neuromodulation targeting the thalamic nuclei-specifically the centromedian nucleus, anterior nucleus of the thalamus, and pulvinar nucleus-may be considered. Currently, thalamic nuclei selection is based mainly on the location of seizure onset, without a detailed evaluation of their network involvement.

View Article and Find Full Text PDF
Article Synopsis
  • Neurons communicate information through variable action potentials that can differ significantly with each stimulus repetition.
  • The study investigates the reliability of cortical neurons when stimulated with simulated synaptic inputs and finds that parvalbumin+ (PV) interneurons exhibit high spiking reliability compared to excitatory neurons.
  • This high reliability in PV interneurons enables precise inhibition of other neurons, while the variability in excitatory neurons allows for better integration of synaptic inputs, ultimately influencing how information is processed in the brain.
View Article and Find Full Text PDF

This study seeks to improve urban supply chain management and collaborative governance in the context of public health emergencies (PHEs) by integrating fuzzy theory with the Back Propagation Neural Network (BPNN) algorithm. By combining these two approaches, an early warning mechanism for supply chain risks during PHEs is developed. The study employs Matlab software to simulate supply chain risks, incorporating fuzzy inference techniques with the adaptive data modeling capabilities of neural networks for both training and testing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!