We report a facile method to synthesize elongated nanoframes consisting of Pt and Au in solution. Pentagonal Au nanorods served as templates and successfully led to an elongated AuPt nanoframe after etching the core Au. Subsequently, the coating of Au around Pt ridges resulted in Pt@Au metal nanoframes. The resulting elongated nanostructure exhibited 5 well-defined ridges continuously connected along the long axis. During the shape evolution from pure Au nanorods to elongated Pt@Au metal nanoframes, their corresponding localized surface plasmon resonance bands were monitored. Especially, unique surface plasmon features were observed for elongated Pt@Au nanoframes where the short-axis oscillation of surface free electrons is strongly coupled but the long-axis oscillation is not coupled among the ridges.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5nr08200eDOI Listing

Publication Analysis

Top Keywords

pt@au metal
12
metal nanoframes
12
elongated aupt
8
elongated pt@au
8
surface plasmon
8
elongated
6
nanoframes
5
synthesis optical
4
optical property
4
property characterization
4

Similar Publications

Computational exploration of M-sites with chemical order and disorder in M'M''B and M'M''B compounds.

Nanoscale

December 2024

Materials Design, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden.

Boron-based materials are highly desirable for their promising mechanical properties, rendering them ideal for various industrial applications. In this study, we take advantage of the two unique metal Wyckoff sites in the prototype structures VB (4 and 2) and CrB (16 and 4). These two sites were populated by two different metals, M' and M'', forming novel B-based ternary M'M''B and M'M''B compounds.

View Article and Find Full Text PDF

A new molecularly imprinted nanocatalytic probe for RRS determination of trace enrofloxacin based on covalent organic framework polymer.

J Colloid Interface Sci

December 2024

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin 541004, China. Electronic address:

A new nanopalladium surface molecularly imprinted covalent organic framework (MICOF) catalytic probe (Pd@TpPa) for enrofloxacin (ENR) was synthesized by molecular imprinting technology, using 1,3,5-triformylphloroglucinol (Tp) and p-phenylenediamine (Pa) as monomers, ENR as the template molecule, and palladium nanoparticles (PdNP) as the core of nanocatalytic probe. This nanoprobe not only specifically recognizes ENR but also catalyzes the cupric tartrate-glucose (GL) indicator reaction. The amino groups in TpPa replace the tartrate ions, forming a new complex with Cu.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores a DNA-based growth strategy for bimetallic nanozymes to enhance their peroxidase activity by modifying their shape and structure.
  • Researchers used four types of DNA oligonucleotides to control the synthesis of Pt nanoparticles on DNA-coated Au nanorods and found that the aggregation behavior of these nanorods depended on the DNA's length and type.
  • A new colorimetric sensor was developed using the DNA-modified nanozymes to effectively detect different biological thiols and distinguish between normal and tumor cells, advancing the understanding of DNA-guided nanozyme behavior and their biosensing capabilities.
View Article and Find Full Text PDF
Article Synopsis
  • Tissue engineering is emerging as a key strategy for treating neurological diseases like spinal cord injuries, utilizing cells, artificial scaffolds, and growth factors.
  • Current materials often lack bioactivity and stimulation potential, highlighting the need for new solutions in regenerative medicine.
  • This research focuses on developing bioactive chitosan-based nerve guide conduits (NGCs) and assesses their properties, including morphology, swelling, biodegradation, and biocompatibility through studies with human astrocytoma cells.
View Article and Find Full Text PDF

The use of biocompatible metal-organic frameworks (MOFs) and electrospun nanofibrous implants shows promise in preventing the recurrence of postsurgical glioblastoma. In this study, temozolomide (TMZ) and platinum‑gold nanorods (PtAu NRs) were encapsulated into the UiO-66-NH MOFs. These were then incorporated into the chitosan-grafted polycaprolactone (PCL) (core)/PCL (shell) nanofibers coated with PtAu NRs for extended release of TMZ during chemo-photothermal therapy against glioblastoma cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!