Evidence of DMSO-Induced Protein Aggregation in Cells.

J Phys Chem A

Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di sotto 8, 06123 Perugia, Italy.

Published: July 2016

We report on a study of protein aggregation induced on different cell samples by dimethyl sulfoxide (DMSO) addition. DMSO is the most commonly used cryoprotectant because it is supposed to readily diffuse across lipid bilayers, thus reducing water activity within cells; despite its large use, the mechanism of penetration and even the main interaction features with cell components are far from being understood. In the present work, infrared absorption spectroscopy is successfully applied to real time detection of chemical and structural changes occurring in cells during dehydration from water and water/DMSO suspensions. As a most interesting result, DMSO is observed to favor protein aggregation both in cellular model systems, as cultured lymphocytes and fibroblasts, and in human samples for clinic use, as hematopoietic stem cells from cord blood. This effect is evidenced at low water content, analogously to what is observed for protein solutions. Such tendency is not specific of the type of protein and suggests one possible origin of DMSO toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.6b00178DOI Listing

Publication Analysis

Top Keywords

protein aggregation
12
protein
5
evidence dmso-induced
4
dmso-induced protein
4
cells
4
aggregation cells
4
cells report
4
report study
4
study protein
4
aggregation induced
4

Similar Publications

Background: Dachaihu decoction (DCHD) is a common Chinese medicine formula against sepsis-induced acute lung injury (SALI). PANoptosis is a novel type of programmed cell death. Nevertheless, The mechanisms of DCHD against SALI via anti-PANoptosis remains unknown.

View Article and Find Full Text PDF

Strain LCG007, isolated from Lu Chao Harbor's intertidal water, phylogenetically represents a novel genus within the family Rhodobacteraceae. Metabolically, it possesses a wide array of amino acid metabolic genes that enable it to thrive on both amino acids or peptides. Also, it could hydrolyze peptides containing D-amino acids, highlighting its potential role in the cycling of refractory organic matter.

View Article and Find Full Text PDF

Distinct subcellular localization of tau and alpha-synuclein in lewy body disease.

Acta Neuropathol Commun

January 2025

Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.

Lewy bodies and neurofibrillary tangles, composed of α-synuclein (α-syn) and tau, respectively, often are found together in the same brain and correlate with worsening cognition. Human postmortem studies show colocalization of α-syn and tau occurs in Lewy bodies, but with limited effort to quantify colocalization. In this study, postmortem middle temporal gyrus tissue from decedents (n = 9) without temporal lobe disease (control) or with Lewy body disease (LBD) was immunofluorescently labeled with antibodies to phosphorylated α-syn (p-α-syn), tau phosphorylated at Ser202/Thr205 (p-tau), or exposure of tau's phosphatase-activating domain (PAD-tau) as a marker of early tau aggregates.

View Article and Find Full Text PDF

Neurological Diseases can be Regulated by Phase Separation.

Rev Physiol Biochem Pharmacol

January 2025

Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.

Several neurological diseases arise from abnormal protein aggregation within neurones and this is closely regulated by phase separation. One such is motor neurone disease and aberrant aggregation of superoxide dismutase. Again these events are regulated by electrical forces that are examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!