Magnetic resonance imaging (MRI) using magnetic nanoparticles has been used to diagnose vascular diseases as well as to monitor transplanted cells and tissues. In this study, we synthesized magnetic iron oxide nanoparticles (TMADM-03), electrically charged by the presence of a cationic end-group substitution of dextran, and observed these nanoparticles inside three-dimensional models of HepG2 spheroids, which mimic tissues. Patterned cell array glass disks were prepared to visualize the presence of TMADM-03 uptaken by HepG2 spheroids using transmission electron microscopy (TEM). The HepG2 cells (2 × 10(5) cells) were inoculated onto Cell-able™ 12-well plates. After 48 h of culture, the cells were incubated with 75 µg Fe/ml TMADM-03 in culture medium for 24 h. To investigate the cellular function of the HepG2 spheroids, the albumin secretion was evaluated by an ELISA. The albumin secretion after incubation for 24 h was reduced compared with the secretion prior to the addition of TMADM-03. TEM image samples were prepared in a planar direction or a vertical direction to the HepG2 spheroids on patterned cell array glass disks. The incorporation of TMADM-03 inside the HepG2 spheroids was confirmed. In addition, TMADM-03 could be observed in the deeper layers of the spheroids, and this was localized in the lysosomes. These data suggest that the novel magnetic iron oxide nanoparticles invade three-dimensional HepG2 spheroids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4733861 | PMC |
http://dx.doi.org/10.3727/215517913X666530 | DOI Listing |
Toxicol Mech Methods
January 2025
Department of Life Sciences, of the University of Coimbra, Coimbra, Portugal.
Mitochondria are affected by chemical substances and play a critical role in drug-induced liver injury (DILI). Chemical substances can have a significant impact on various cellular processes, such as the disruption of oxidative phosphorylation, oxidative stress, and alteration of glucose metabolism. Given the consequences of these effects, it is crucial to understand the molecular pathways of chemical substances in the context of hepatotoxicity to prevent and treat DILI.
View Article and Find Full Text PDFThe safety of bisphenol A (BPA) due to its adverse effects on the immune system has led to an increasing concern and a significant regulatory shift. The European Food Safety Authority (EFSA) proposed a reduction in the tolerable daily intake (TDI) of BPA in food in their 2023 scientific opinion, highlighting the need for stricter regulations compared to their previous assessment in 2015. This regulatory action has spurred the production of BPA alternatives, raising concerns about their safety due to insufficient toxicological data.
View Article and Find Full Text PDFMutat Res Genet Toxicol Environ Mutagen
December 2024
National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, Ljubljana 1000, Slovenia. Electronic address:
Nanoscale
December 2024
School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700032, India.
Lung adenocarcinoma, recognized as one of the most formidable malignancies with a dismal prognosis and low survival rates, poses a significant challenge in its treatment. This article delineates the design and development of a carbon dot-vesicle conjugate (HACD-TMAV) for efficient cytotoxicity towards lung cancer cells by target selective delivery of the glutamine inhibitor 6-diazo-5-oxo-L-norleucine (DON) within CD44-enriched A549 cancer cells. HACD-TMAV is composed of hyaluronic acid-based carbon dots (HACDs) and trimesic acid-based vesicles (TMAV), which are bound electrostatic interactions.
View Article and Find Full Text PDFJ Mater Chem B
December 2024
Department of Materials & Henry Royce Institute, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, UK.
Supramolecular bioinspired self-assembling peptide hydrogel (SAPH) scaffolds represent a class of fully defined synthetic materials whose chemical and mechanical properties can be finely engineered. In this study, the relationship between SAPHs physicochemical properties and HepG2 cells viability, spheroid formation and function are discussed. We first report that negatively charged SAPHs promote hepatocyte proliferation and spheroids formation 3D culture while positively charged SAPHs lead to hepatocyte death irrespective of the hydrogel mechanical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!