The Ubiquitin-Proteasome System: Potential Therapeutic Targets for Alzheimer's Disease and Spinal Cord Injury.

Front Mol Neurosci

Department of Medicine, Mount Sinai School of MedicineNew York, NY, USA; Medicine, James J. Peters Veteran Affairs Medical CenterBronx, NY, USA; National Center of Excellence for the Medical Consequences of Spinal Cord Injury (SCI)Bronx, NY, USA.

Published: February 2016

The ubiquitin-proteasome system (UPS) is a crucial protein degradation system in eukaryotes. Herein, we will review advances in the understanding of the role of several proteins of the UPS in Alzheimer's disease (AD) and functional recovery after spinal cord injury (SCI). The UPS consists of many factors that include E3 ubiquitin ligases, ubiquitin hydrolases, ubiquitin and ubiquitin-like molecules, and the proteasome itself. An extensive body of work links UPS dysfunction with AD pathogenesis and progression. More recently, the UPS has been shown to have vital roles in recovery of function after SCI. The ubiquitin hydrolase (Uch-L1) has been proposed to increase cellular levels of mono-ubiquitin and hence to increase rates of protein turnover by the UPS. A low Uch-L1 level has been linked with Aβ accumulation in AD and reduced neuroregeneration after SCI. One likely mechanism for these beneficial effects of Uch-L1 is reduced turnover of the PKA regulatory subunit and consequently, reduced signaling via CREB. The neuron-specific F-box protein Fbx2 ubiquitinates β-secretase thus targeting it for proteasomal degradation and reducing generation of Aβ. Both Uch-L1 and Fbx2 improve synaptic plasticity and cognitive function in mouse AD models. The role of Fbx2 after SCI has not been examined, but abolishing ß-secretase reduces neuronal recovery after SCI, associated with reduced myelination. UBB+1, which arises through a frame-shift mutation in the ubiquitin gene that adds 19 amino acids to the C-terminus of ubiquitin, inhibits proteasomal function and is associated with increased neurofibrillary tangles in patients with AD, Pick's disease and Down's syndrome. These advances in understanding of the roles of the UPS in AD and SCI raise new questions but, also, identify attractive and exciting targets for potential, future therapeutic interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4727241PMC
http://dx.doi.org/10.3389/fnmol.2016.00004DOI Listing

Publication Analysis

Top Keywords

ubiquitin-proteasome system
8
alzheimer's disease
8
spinal cord
8
cord injury
8
advances understanding
8
sci
6
ubiquitin
6
system potential
4
potential therapeutic
4
therapeutic targets
4

Similar Publications

Discovery of a potent PROTAC degrader for RNA demethylase FTO as antileukemic therapy.

Acta Pharm Sin B

December 2024

School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.

The fat mass and obesity-associated protein (FTO) is an RNA demethylase required for catalytic demethylation of -methyladenosine (mA); it is highly expressed and functions as an oncogene in acute myeloid leukemia (AML). Currently, the overarching objective of targeting FTO is to precisely inhibit the catalytic activity. Meanwhile, whether FTO degradation also exerts antileukemic effects remains unknown.

View Article and Find Full Text PDF

Introduction: Hypoxia, a condition characterized by inadequate oxygen supply to tissues, triggers various cellular responses, including apoptosis. The RNA demethylase FTO has been shown to exert anti-apoptotic effects, but its functions independent of RNA demethylase-particularly those involving protein-protein interactions-during hypoxia remain unclear.

Objectives: This study aimed to elucidate the cytoprotective mechanism of FTO in preventing apoptosis under hypoxic stress.

View Article and Find Full Text PDF

Pathological roles of ubiquitination and deubiquitination systems in sepsis-induced myocardial dysfunction.

Biomol Biomed

January 2025

Department of Critical Care Medicine, Affiliated Hospital of Nantong University, Medical school of Nantong University, Jiangsu, China.

Sepsis-induced myocardial dysfunction (SIMD) is a severe complication of sepsis, characterized by impaired cardiac function and high mortality rates. Despite significant advances in understanding sepsis pathophysiology, the molecular mechanisms underlying SIMD remain incompletely elucidated. Ubiquitination and deubiquitination, critical post-translational modifications (PTMs) regulating protein stability, localization, and activity, play pivotal roles in cellular processes, such as inflammation, apoptosis, mitochondrial function, and calcium handling.

View Article and Find Full Text PDF

Sacubitril/valsartan (Sac/Val) belongs to the group of angiotensin receptor-neprilysin inhibitors and has been used for the treatment of heart failure (HF) for several years. The mechanisms that mediate the beneficial effects of Sac/Val are not yet fully understood. In this study we investigated whether Sac/Val influences the two proteolytic systems, the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP), in a mouse model of pressure overload induced by transverse aortic constriction (TAC) and in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) treated with endothelin-1 (ET1) serving as a human cellular model of hypertrophy.

View Article and Find Full Text PDF

The interconnective role of the UPS and autophagy in the quality control of cancer mitochondria.

Cell Mol Life Sci

January 2025

State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.

Uncontrollable cancer cell growth is characterized by the maintenance of cellular homeostasis through the continuous accumulation of misfolded proteins and damaged organelles. This review delineates the roles of two complementary and synergistic degradation systems, the ubiquitin-proteasome system (UPS) and the autophagy-lysosome system, in the degradation of misfolded proteins and damaged organelles for intracellular recycling. We emphasize the interconnected decision-making processes of degradation systems in maintaining cellular homeostasis, such as the biophysical state of substrates, receptor oligomerization potentials (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!