Mathematical model for adaptive evolution of populations based on a complex domain.

Saudi J Biol Sci

Institute of Engineering Mathematics, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia.

Published: January 2016

A mutation is ultimately essential for adaptive evolution in all populations. It arises all the time, but is mostly fixed by enzymes. Further, most do consider that the evolution mechanism is by a natural assortment of variations in organisms in line for random variations in their DNA, and the suggestions for this are overwhelming. The altering of the construction of a gene, causing a different form that may be communicated to succeeding generations, produced by the modification of single base units in DNA, or the deletion, insertion, or rearrangement of larger units of chromosomes or genes. This altering is called a mutation. In this paper, a mathematical model is introduced to this reality. The model describes the time and space for the evolution. The tool is based on a complex domain for the space. We show that the evolution is distributed with the hypergeometric function. The Boundedness of the evolution is imposed by utilizing the Koebe function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705264PMC
http://dx.doi.org/10.1016/j.sjbs.2015.09.012DOI Listing

Publication Analysis

Top Keywords

mathematical model
8
adaptive evolution
8
evolution populations
8
based complex
8
complex domain
8
space evolution
8
evolution
6
model adaptive
4
populations based
4
domain mutation
4

Similar Publications

Purpose: This study aimed to examine the differential expression profiles of plasma metabolites in rat models of post-traumatic osteoarthritis (PTOA) and elucidate the roles of metabolites and their pathways in the progression of PTOA using bioinformatics analysis.

Method: Plasma samples were collected from 24 SD female rats to model PTOA, and metabolomic assays were conducted. The samples were divided into three groups: the surgically induced mild PTOA group (Group A: 3 weeks postoperative using the modified Hulth model; age 2 months), the surgically induced severe PTOA group (Group B: 5 weeks postoperative using the modified Hulth model; age 2 months), and the normal control group (Group C: healthy rats aged 2 months).

View Article and Find Full Text PDF

Background: For a growing number of food-based dietary guidelines (FBDGs), diet optimization is the tool of choice to account for the complex demands of healthy and sustainable diets. However, decisions about such optimization models' parameters are rarely reported nor systematically studied.

Objectives: The objectives were to develop a framework for (i) the formulation of decision variables based on a hierarchical food classification system; (ii) the mathematical form of the objective function; and (iii) approaches to incorporate nutrient goals.

View Article and Find Full Text PDF

Within a recent decade, graph neural network (GNN) has emerged as a powerful neural architecture for various graph-structured data modelling and task-driven representation learning problems. Recent studies have highlighted the remarkable capabilities of GNNs in handling complex graph representation learning tasks, achieving state-of-the-art results in node/graph classification, regression, and generation. However, most traditional GNN-based architectures like GCN and GraphSAGE still faced several challenges related to the capability of preserving the multi-scaled topological structures.

View Article and Find Full Text PDF

Obesity is associated with comorbidities including type 2 diabetes, chronic nonhealing wounds, and psoriasis. Normally, skin homeostasis and repair is regulated through the production of cytokines and growth factors derived from skin-resident cells including epidermal γδ T cells. However, epidermal γδ T cells exhibit reduced proliferation and defective growth factor and cytokine production during obesity and type 2 diabetes.

View Article and Find Full Text PDF

Postoperative adhesions are abrogated by a sustained-release anti-JUN therapeutic in preclinical models.

Sci Transl Med

March 2025

Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.

Postoperative abdominal adhesions are the leading cause of bowel obstruction and a cause of chronic pain and infertility. Adhesion formation occurs after 50 to 90% of abdominal operations and has no proven preventative or treatment strategy. Abdominal adhesions derive primarily from the visceral peritoneum and are composed of polyclonally proliferating tissue-resident fibroblasts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!