The principal methyl donor of the cell, S-adenosylmethionine (SAMe), is produced by the highly conserved family of methionine adenosyltranferases (MATs) via an ATP-driven process. These enzymes play an important role in the preservation of life, and their dysregulation has been tightly linked to liver and colon cancers. We present crystal structures of human MATα2 containing various bound ligands, providing a "structural movie" of the catalytic steps. High- to atomic-resolution structures reveal the structural elements of the enzyme involved in utilization of the substrates methionine and adenosine and in formation of the product SAMe. MAT enzymes are also able to produce S-adenosylethionine (SAE) from substrate ethionine. Ethionine, an S-ethyl analog of the amino acid methionine, is known to induce steatosis and pancreatitis. We show that SAE occupies the active site in a manner similar to SAMe, confirming that ethionine also uses the same catalytic site to form the product SAE.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4776477PMC
http://dx.doi.org/10.1073/pnas.1510959113DOI Listing

Publication Analysis

Top Keywords

catalytic steps
8
crystallography captures
4
captures catalytic
4
steps human
4
methionine
4
human methionine
4
methionine adenosyltransferase
4
adenosyltransferase enzymes
4
enzymes principal
4
principal methyl
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!