A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cytokines Regulate β-Cell Thioredoxin-interacting Protein (TXNIP) via Distinct Mechanisms and Pathways. | LitMetric

Cytokines Regulate β-Cell Thioredoxin-interacting Protein (TXNIP) via Distinct Mechanisms and Pathways.

J Biol Chem

From the Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama 35294

Published: April 2016

Thioredoxin-interacting protein (TXNIP) is a key regulator of diabetic β-cell apoptosis and dysfunction, and TXNIP inhibition prevents diabetes in mouse models of type 1 and type 2 diabetes. Although we have previously shown that TXNIP is strongly induced by glucose, any regulation by the proinflammatory cytokines tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), and interferon γ (IFNγ) has remained largely unexplored. Moreover, even though this three-cytokine mixture is widely used to mimic type 1 diabetes in vitro, the mechanisms involved are not fully understood. Interestingly, we have now found that this cytokine mixture increases β-cell TXNIP expression; however, although TNFα had no effect, IL-1β surprisingly down-regulated TXNIP transcription, whereas IFNγ increased TXNIP levels in INS-1 β-cells and primary islets. Human TXNIP promoter analyses and chromatin immunoprecipitation studies revealed that the IL-1β effect was mediated by inhibition of carbohydrate response element binding protein activity. In contrast, IFNγ increased pro-apoptotic TXNIP post-transcriptionally via induction of endoplasmic reticulum stress, activation of inositol-requiring enzyme 1α (IRE1α), and suppression of miR-17, a microRNA that targets and down-regulates TXNIP. In fact, miR-17 knockdown was able to mimic the IFNγ effects on TXNIP, whereas miR-17 overexpression blunted the cytokine effect. Thus, our results demonstrate for the first time that the proinflammatory cytokines TNFα, IL-1β, and IFNγ each have distinct and in part opposing effects on β-cell TXNIP expression. These findings thereby provide new mechanistic insight into the regulation of TXNIP and β-cell biology and reveal novel links between proinflammatory cytokines, carbohydrate response element binding protein-mediated transcription, and microRNA signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4861417PMC
http://dx.doi.org/10.1074/jbc.M115.698365DOI Listing

Publication Analysis

Top Keywords

txnip
13
proinflammatory cytokines
12
thioredoxin-interacting protein
8
protein txnip
8
type diabetes
8
β-cell txnip
8
txnip expression
8
tnfα il-1β
8
ifnγ increased
8
carbohydrate response
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!