Nanocomposite materials of the Fe-Cu system with/without small addition of carbon nanotubes have been synthesized by mechanochemical activation of elemental Fe and Cu powders in a high-energy planetary ball mill and have been examined by the X-ray diffraction method, SEM and the thermopower methods; the tensile strength of the materials obtained has been estimated. The metastable (Fe, Cu) supersaturated solid solution is formed in the Fe-Cu nanocomposites during milling process. The coherent scattering block size of the materials obtained is decreased with increase of milling time. The duration of mechanochemical activation affects the physical properties of nanocomposites studied. Addition of a small amount of nanotubes into Fe-Cu charge results in a significant increase of strength of the Fe-Cu (4:1) + CNT nanocomposite materials (NCMs) obtained.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4747918 | PMC |
http://dx.doi.org/10.1186/s11671-016-1298-8 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Food Security and Technology Center, Khalifa University of Science and Technology, P. O. Box 127788, Abu Dhabi, United Arab Emirates. Electronic address:
Packaging made of plastic harms the environment. Thus, polysaccharide edible films are becoming a popular food packaging solution. Alginate is a biopolymer derived from seaweed that has the potential to create food packaging materials that are environmentally friendly and biodegradable.
View Article and Find Full Text PDFBioelectrochemistry
December 2024
Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China.
Carcinoembryonic antigen (CEA) is a broad-spectrum biomarker, and its accurate detection and analysis is important for early clinical diagnosis and treatment. This study aimed to develop a highly sensitive and selective sandwich-type immunosensor based on electrochemical impedance spectroscopy (EIS) for the accurate detection of CEA. A novel composite material, gold nanoparticle/reduced-graphene oxide/graphitic carbon nitride (AuNPs/rGO/g-CN), was synthesized with excellent electrical conductivity and a large specific surface area to immobilize biological probes.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, TiCT MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
Nanoconfinements are utilized to program how polymers entangle and disentangle as chain clusters to engineer pseudo bonds with tunable strength, multivalency, and directionality. When amorphous polymers are grafted to nanoparticles that are one magnitude larger in size than individual polymers, programming grafted chain conformations can "synthesize" high-performance nanocomposites with moduli of ≈25GPa and a circular lifecycle without forming and/or breaking chemical bonds. These nanocomposites dissipate external stresses by disentangling and stretching grafted polymers up to ≈98% of their contour length, analogous to that of folded proteins; use both polymers and nanoparticles for load bearing; and exhibit a non-linear dependence on composition throughout the microscopic, nanoscopic, and single-particle levels.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Physics, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
A sustainable biosorbent, silver nanoparticles-decorated coffee-ground waste (CWAg), was synthesized through a simple in-situ reduction method. CWAg is extensively characterized via SEM-EDX, PZC, FTIR, XRD, HR-TEM, and XPS analyses. The biosorbent was tested to remove chromium (Cr(VI)) and methylene blue (MB) from wastewater, and its antibacterial properties was evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!