Androgens and progestogens are two important groups of endocrine disrupting compounds (EDCs) which are implicated to produce severe detrimental impact over aquatic biota, even at very low concentrations of ngL(-1). For this reason, one of the major challenges to analytical chemists is the development of sensitive and selective extraction processes which allow the rapid and green determination of these emerging pollutants at low concentrations in environmental samples. Fabric phase sorptive extraction is a new, highly sensitive, efficient and solvent minimized technique which combine the advantages of sol-gel derived microextraction sorbents and the rich surface chemistry of cellulose fabric substrate. This process has several advantages such as minimum usage of organic solvents, short extraction times, small sample volumes and high analyte preconcentration factors. In this study, an extraction method based on sorptive fabric phase coupled to ultra-high-performance liquid chromatography tandem mass spectrometry detection (FPSE-UHPLC-MS/MS) has been developed for the determination of four progestogens and six androgens in environmental and biological samples. All the parameters involved in the extraction, such as sample volume, extraction and desorption times, desorption solvent volume and sample pH values have been optimized. The developed method provides satisfactory limits of detection (between 1.7 and 264ngL(-1)), good recoveries and low relative standard deviations (below 10% in tap and osmosis water and below 20% in wastewater and urine). Subsequently, the method was used to analyse tap water, wastewater treated with different processing technologies and urine samples. The concentrations of the detected hormones ranged from 28.3 to 227.3 ngL(-1) in water samples and from 1.1 to 3.7μgL(-1) in urine samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2016.01.077 | DOI Listing |
Small
January 2025
Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
Aqueous zinc-based batteries (AZBs) are gaining widespread attention owing to their intrinsic safety, relatively low electrode potential, and high theoretical capacity. Transition metal dichalcogenides (TMDs) have convenient 2D ion diffusion channels, so they have been identified as promising host materials for AZBs, but face several key challenges such as the narrow interlayer spacing and the lack of in-deep understanding energy storage mechanisms. This review presents a comprehensive summary and discussion of the intrinsic structure, charge storage mechanisms, and key fabrication strategies of TMD-based cathodes for AZBs.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
State Key Laboratory of High-Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co., Ltd., Nanjing 210008, China.
A novel class of SiO aerogel-based resin composite with a self-formed foamy structure and an extremely low thermal conductivity, as well as excellent fire resistance, was fabricated via a room temperature and atmospheric pressure route. The self-formed foamy structure was achieved by utilizing SiO aerogel particles not only as a thermal insulative functional additive filler but also as nano-sized solid particles in a Picking emulsion system, adjusting the surface tension as a stabilizer at the interface between the two immiscible phases (liquid and air in this case). The results of foamy structure analyses via scanning electron microscopy, micro-CT, and N adsorption-desorption isotherms validate the successful generation of a micro-scale porous structure with the enhancement of the aerogel nano-scale solid particles at the wall as a stabilizer.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
School of Civil Engineering, Wuhan University, Wuhan 430072, China.
Fracture toughness is a critical indicator for the application of NiTi alloys in medical fields. We propose to enhance the fracture toughness of NiTi alloys by controlling the spatial grain size (GS) gradient. Utilizing rolling processes and heat treatment technology, three categories of NiTi alloys with distinct spatial GS distributions were fabricated and subsequently examined through multi-field synchronous fracture tests.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Guangdong Key Laboratory of Materials and Equipment in Harsh Marine Environment, School of Ocean Engineering, Guangzhou Maritime University, Guangzhou 510725, China.
Metal oxide semiconductor (MOS) hydrogen sensors offer advantages, such as high sensitivity and fast response, but their challenges remain in achieving low-cost fabrication and stable operation at room temperature. This study investigates Nb-doped TiO (NTO) thin films prepared via a one-step micro-arc oxidation (MAO) with the addition of NbO nanoparticles into the electrolyte for room-temperature hydrogen sensing. The characterization results revealed that the incorporation of NbO altered the film's morphology and phase composition, increasing the Nb content and forming a homogeneous composite thin film.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Consiglio Nazionale delle Ricerche (CNR), Istituto per la Sintesi Organica e Fotoreattività (ISOF), Via Piero Gobetti, 101, 40129 Bologna, Italy.
Chitosan/polyvinyl alcohol nanofibrous mats loaded with nano-hydroxyapatite and/or curcumin are successfully fabricated by the electrospinning method for the first time. Nano-hydroxyapatite is prepared by the co-precipitation method. The XRD pattern of calcined powder at 700 °C for 2 h reveals the presence of hydroxyapatite as a sole phase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!