Hydrogenated blue titania with high solar absorption and greatly improved photocatalysis.

Nanoscale

CAS Key Laboratory of Materials for Energy Conversion and State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China. and Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China.

Published: February 2016

Hydrogenated black titania, with a crystalline core/amorphous shell structure, has attracted global interest due to its excellent photocatalytic properties. However, the understanding of its structure-property relationships remains a great challenge and a more effective method to produce hydrogenated titania is desirable. Herein, we report a TiH2 assisted reduction method to synthesize bluish hydrogenated titania (TiO2-x:H) that is highly crystallized. The characteristic amorphous shells, which are essential for the enhancement of solar absorption and photocatalysis in many reported hydrogenated titania, are completely removed by hydrogen peroxide. The blue TiO2-x:H sample without amorphous shells delivers not only significantly improved visible- and infrared-light absorption but also greatly enhanced photocatalytic activity compared to pristine TiO2. Its water decontamination is 2.5 times faster and the hydrogen production was 1.9-fold higher over pristine TiO2. Photoelectrochemical measurement reveals greatly improved carrier density and photocurrent (a 4.3-fold increase) in the reduced TiO2-x:H samples. This work develops a facile and versatile method to prepare hydrogenated titania and proposes a new understanding of the hydrogenated titania that doped hydrogen atoms, instead of the amorphous shells, are essential for its high photocatalytic performance.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5nr07953eDOI Listing

Publication Analysis

Top Keywords

hydrogenated titania
20
amorphous shells
12
solar absorption
8
absorption greatly
8
greatly improved
8
shells essential
8
pristine tio2
8
hydrogenated
7
titania
7
hydrogenated blue
4

Similar Publications

How to improve the stability and activity of metal-organic frameworks is an attractive but challenging task in energy conversion and pollutant degradation of metal-organic framework materials. In this paper, a facile method is developed by fabricating titanium dioxide nanoparticles (TiO NPs) layer on 2D copper tetracarboxylphenyl-metalloporphyrin metal-organic frameworks with zinc ions as the linkers (ZnTCuMT-X, "Zn" represented zinc ions as the linkers, the first "T" represented tetracarboxylphenyl-metalloporphyrin (TCPP), "Cu" represented the Cu coordinated into the porphyrin macrocycle, "M" represented metal-organic frameworks, the second "T" represented TiO NPs layer, and "X" represented the added volume of n-tetrabutyl titanate (X = 100, 200, 300 or 400)). It is found that the optimized ZnTCuMT-200 showed greatly and stably enhanced H generation, which is ≈28.

View Article and Find Full Text PDF

Introduction: Green tea is a medicinal beverage extracted from the plant Camellia sinensis. Antioxidants that exist naturally can be extracted as pure compounds from their parent materials for nutraceutical and medicinal applications. The present study aims to assess the antioxidant activity of Zinc oxide-titanium dioxide nano-composites (ZnO-TiO2 NCs) containing green tea extract.

View Article and Find Full Text PDF

Investigation of the Photocatalytic Activity of Copper-Modified Commercial Titania (P25) in the Process of Carbon Dioxide Photoreduction.

Materials (Basel)

December 2024

Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland.

The photocatalytic reduction of CO to useful products is an area of active research because it shows a potential to be an efficient tool for mitigating climate change. This work investigated the modification of titania with copper(II) nitrate and its impact on improving the CO reduction efficiency in a gas-phase batch photoreactor under UV-Vis irradiation. The investigated photocatalysts were prepared by treating P25-copper(II) nitrate suspensions (with various Cu concentrations), alkalized with ammonia water, in a microwave-assisted solvothermal reactor.

View Article and Find Full Text PDF

Carbon quantum dots modification reduces TiO nanoparticle toxicity in an aquatic food chain.

J Hazard Mater

January 2025

Environment Research Institute, Shandong University, Qingdao 266237, China. Electronic address:

Carbon quantum dots (CQDs) are emerging as a promising zero-dimensional carbon nanomaterial with the potential to enhance the catalytic properties of titanium dioxide nanoparticles (TiO NPs). Although CQDs modification alters the physicochemical properties of TiO NPs, the impact on their toxicity has been rarely explored. In this study, we investigated the effects of CQDs doping on the toxicity, bioaccumulation, and trophic transfer of TiO NPs using a representative aquatic food chain comprising phytoplankton (Scenedesmus obliquus), zooplankton (Daphnia magna), and fish (Danio rerio).

View Article and Find Full Text PDF

Salinity is one of the predominant abiotic stressors that reduce plant growth, yield, and productivity. Ameliorating salt tolerance through nanotechnology is an efficient and reliable methodology for enhancing agricultural crops yield and quality. Nanoparticles enhance plant tolerance to salinity stress by facilitating reactive oxygen species detoxification and by reducing the ionic and osmotic stress effects on plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!