The present study aims to examine the effect of low-dose ionizing irradiation on DNA double strand breaks (DSB) in mouse spermatogonial stem cells (SSCs) and reveal the underlying pathways for the DNA repair for DSB in SSCs. Eighteen one-month-old mice were divided into 6 groups and sacrificed separately at 45 minutes, 2 hours, 24 hours, 48 hours, and 72 hours after 0.1Gy X-ray irradiation (mice without receiving ionizing irradiation served as control). After perfusion fixation, testes were removed, sectioned, and followed by staining of γH2AX, 53BP1, Caspase 3, and promyelocytic leukemia zinc-finger (PLZF) for analysis among the different groups. The staining was observed by immunofluorescence visualized by confocal laser scanning. After low-dose irradiation, only 53BP1, but not Caspase3 or γH2AX was upregulated in PLZF positive SSCs within 45 minutes. The expression level of 53BP1 gradually decreased 24 hours after irradiation. Moreover, low-dose irradiation had no effect on the cell number and apoptotic status of SSCs. However other spermatogenic cells highly expressed γH2AX shortly after irradiation which was dramatically reduced following the events of DNA repair. It appears that low-dose ionizing irradiation may cause the DNA DSB of mouse spermatogenic cells. 53BP1, but not γH2AX, is involved in the DNA repair for DSB in SSCs. Our data indicates that 53BP1 plays an important role in the pathophysiological repair of DNA DSB in SSCs. This may open a new avenue to understanding the mechanisms of DNA repair of SSCs and male infertility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/19396368.2015.1125561 | DOI Listing |
Toxicon
January 2025
College of Biological Sciences and Technology, YiLi Normal University. Electronic address:
Background: Radiotherapy is essential for the management of esophageal squamous cell carcinoma (ESCC). However, ESCC cells are highly susceptible to developing resistance to radiotherapy, leading to poor prognosis. Ursolic acid (UA) is a herbal monomer, has multiple medicinal benefits like anti-tumor.
View Article and Find Full Text PDFCurr Mol Med
January 2025
Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan.
Background: The anticancer activity and radiosensitizing effect of Auranofin, an an-tirheumatic and an approved gold metallic drug, have been investigated from multiple perspectives. In this study, the action of the new gold complex compound TPN-Au(I)-MM4 was compared with that of auranofin.
Methods: The inhibitory effect of 10 μM and 50 μM concentrations on cell proliferation was investigated using the human colon cancer cell lines HCT116 and SW480.
Pract Radiat Oncol
January 2025
The Legacy Heritage Oncology Center & Dr Larry Norton Institute, Soroka University Medical Center, Ben Gurion University of the Negev, Faculty of Medicine, Be'er Sheva, Israel.
Purpose: Continuous advancements in cancer management have resulted in increased long-term survival rates amongst cancer survivors and in turn have exposed the full extent of radiotherapy-associated morbidities. Radiation-induced coronary heart disease (RICHD) is one of the leading causes of morbidity and mortality in cancer survivors, particularly in those having undergone mediastinal radiation. While mediastinal radiation has been shown to substantially reduce both recurrence and mortality rates in multiple thoracic malignancies, the risk for the development of RICHD is of significant concern.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Plant Production Department, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria 21531, Egypt; Work Station of Science and Technique for Post-doctoral in Sugar Beet Institute Afliated to Heilongjiang University, 74 Xuefu Road, Harbin 150000, Heilongjiang, China.
Ion beam mutagenesis is an advanced technique capable of inducing substantial changes in plants, resulting in noticeable alterations in their growth. However, the precise molecular mechanisms underlying the effects of radiation on soybeans remain unclear. This study investigates the impact of ionizing radiation on soybean development through a comprehensive approach that integrates transcriptomics and metabolomics.
View Article and Find Full Text PDFBioelectromagnetics
January 2025
Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.
Although static magnetic fields (SMFs) have been reported to induce only minimal biological effects, it has been proposed that they may alter the effects of other agents, such as ionizing radiation. We sham-exposed or exposed human SH-SY5Y neuroblastoma cells to 0.5-, 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!