Smut caused by Sporisorium scitamineum is one of the important diseases of sugarcane with global significance. Despite the intriguing nature of sugarcane, S. scitamineum interaction, several pertinent aspects remain unexplored. This study investigates the proteome level alterations occurring in the meristem of a S. scitamineum infected susceptible sugarcane cultivar at whip emergence stage. Differentially abundant proteins were identified by 2DE coupled with MALDI-TOF/TOF-MS. Comprehensively, 53 sugarcane proteins identified were related to defence, stress, metabolism, protein folding, energy, and cell division; in addition, a putative effector of S. scitamineum, chorismate mutase, was identified. Transcript expression vis-à-vis the activity of phenylalanine ammonia lyase was relatively higher in the infected meristem. Abundance of seven candidate proteins in 2D gel profiles was in correlation with its corresponding transcript expression levels as validated by qRT-PCR. Furthermore, this study has opened up new perspectives on the interaction between sugarcane and S. scitamineum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pmic.201500245 | DOI Listing |
J Agric Food Chem
January 2025
State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China.
Sugarcane has the most complex polyploid genome in the world, and sugar-related traits are one of the most important aims in sugarcane breeding. It is essential to construct a representative pan-transcriptome that contains all transcripts of a species for studies on genetic diversity, population expression, and omics analyses in sugarcane. In this study, we constructed the first comprehensive pan-transcriptome for sugarcane, and 8434 highly reliable open reading frames were found, which were not aligned with any published sugarcane genome.
View Article and Find Full Text PDFTurk J Biol
August 2024
Department of Agricultural Sciences and Technology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
Background/aim: (SCMV; genus and family ), poses a significant threat to global sugarcane cultivars, including those in Pakistan. The aim of this study was to develop a rapid and effective diagnostic tool for detection of SCMV, enabling timely implementation of control measures to mitigate potential yield losses.
Materials And Methods: The study focused on the in silico analysis, physicochemical properties, immunogenicity, and subcellular localization of the SCMV coat protein (CP).
Sci Rep
January 2025
Cellulose and Paper Department, National Research Centre, 33 El Bohouth Str, P.O. 12622, Dokki Giza, Egypt.
A new method was developed to quickly produce carboxymethyl hemicellulose (CM-Hemi) and fluorescent nitrogen-doped carbon dots (N-CDs) from sugarcane bagasse (SB). These materials were then combined with calcium chloride (CaCl₂) to create hydrogel sensors with antibacterial and antifungal properties. The CM-Hemi@Ca-N-CDs hydrogel was effective against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria compared to CM-Hemi@Ca which give no antibacterial activity.
View Article and Find Full Text PDFEnzyme Microb Technol
December 2024
Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil. Electronic address:
β-glucosidases (BGLs) are key enzymes in the depolymerization of cellulosic biomass, catalyzing the conversion of cello-oligosaccharides into glucose. This conversion is pivotal for enhancing the production of second-generation ethanol or other value-added products in biorefineries. However, the process is often cost-prohibitive due to the high enzyme loadings required.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China.
The pathogen is responsible for the devastating pokkah boeng disease, which causes significant economic losses in sugarcane production. However, the mechanisms by which it affects plant immunity remain largely unknown. Common in Fungal Extracellular Membrane (CFEM) domain proteins have been implicated in fungal growth, infection processes, and pathogenicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!